最简单的数学应用题(5篇)。
信息化时代注重文档写作和传递的效率和质量,如今网上范文的种类和数量越来越多。范文的框架通常反映了文章的分段过渡及段落内句子的组成,57梯子网编辑为了您更好的阅读体验精心编辑了这份“最简单的数学应用题”,以下是本文提供的一些有用的参考信息请您查看!
最简单的数学应用题 篇1
小学数学除了简单的计算,到了小学高年级阶段,开始出现应用题。应用题是把含有数量关系的实际问题用文字叙述出来所形成的题目。下面是关于小学数学倍数的应用题,一起来练习吧!
【倍数问题】
一、求一个数的几倍就乘以几,要用乘法
1. 3的5倍是多少?
3x5=15 答:3的5倍是15。
2. 4的10倍是多少?
3. 7的9倍是多少?
二、求一个数是另一个数的几倍,用除法,用大数除以小的数
1. 45是9的多少倍?
2. 45÷9=5 答:45是9的5倍。
3. 35是5的多少倍?
4. 72是8的多少倍?
【应用问题】
(一)、求一个数的几倍是多少?
公式 :小数 × 倍 数 =大 数
相当于:平均数× 份 数 =总数
相当于:1倍数X倍 数 = 几倍的数
相当于:每份数X份数 = 总 数
1、小明今年9岁,爸爸的年龄是小玲的5倍,爸爸今年多少岁?
2、买一支笔2元钱,买60支这样的笔要多少钱?
能吃多少只害虫?
(二)、求一个数是另一个数的几倍?
公式: 大数 ÷ 小 数 = 倍数
相当于: 几倍的数 ÷ 1倍数= 倍数
相当于:总 数 ÷ 平均数 = 份 数
相当于:总数 ÷ 每份数 = 份 数
1、小明今年9岁,爸爸今年45。爸爸的年龄是小玲的几倍?
2、买一支笔2元钱,花120元可以买多少支这样的笔要多少钱?
3、三个同学做纸花。做了24朵红花,6朵黄花。红花是黄花的几倍?
班共有46名学生,每两人用一张课桌,一共需要多少张课桌?把这些课桌每4张摆一行,能摆多少行?还剩几张?
(三)、求一倍数?
公式:大 数 ÷ 倍数 = 小数
相当于: 几倍的数 ÷ 倍数= 1倍 数
相当于: 总 数 ÷ 份数= 平均数
相当于: 总 数 ÷ 份 数 = 每份数
1、爸爸今年45岁,是小玲年龄的5倍,小明今年多少岁?
2、一只东北虎的重量是360千克,大约是一只鸵鸟的`4倍,是一只企鹅的4倍,是一只企鹅的9倍。问鸵鸟多少千克?企鹅多少千克?
3、买一支笔2元钱,花120元可以买多少支这样的笔要多少钱?
4、饲养小组有母鸡12只,恰好是公鸡的3倍,公鸡有几只?
5、图书馆买来40本故事书,是科技书的5倍,科技书几本?
6、一只海狮重378千克,是一只企鹅体重的9倍。这只企鹅的体重是多少千克?
8、公园运来160盆花,准备摆在4个花坛里。平均每个花坛摆多少盆花?
9、一部儿童电视剧共336分钟。分8集播放,每集大约播放多长时间?
星光小学832名学生分4批去参观天文馆。平均每批有多少人?
奥林匹克火炬在某地传递4天传递了816千米。平均每天传递了多少千米?
有530把椅子,分5次运完。平均每次运多少把?如果分4次运呢?
丁小林家到学校有450米。他每天上学大约走8分钟,他每分钟大约走多少米?
三年级的225名学生要乘5辆车去春游。如果每辆车坐的人同样多,每辆车应该坐多少人?
(四)几倍多几?
公式:小数1×倍数+小数2=大数
1、文具店运来三箱红墨水,每箱100瓶。运来的兰墨水比红墨水多200瓶,运来兰墨水多少瓶?
2、一只猴子重25千克,一头熊猫的体重比猴子的6倍还多12千克一头熊猫的体重是多少?
(五)几倍少几 ?
公式:小数1×倍数-小数2=大数
1、王大伯前年养猪2头,去年养猪头数是前年的3倍,到年底卖了4头,还有几头?
2、一个牧民养了76只山羊,养的绵羊比山羊的4倍少16只。这个牧民养了多少只绵羊?
3、一户菜农去年收黄瓜520千克。收的西红柿是黄瓜的3倍,收的茄子比西红柿少260千克。收茄子多少千克?
【综合题】
1、三年级的学生去茶园里劳动。女生有56人,男生有64人。4名学生分成一组,一共可以分成多少组?
【倍数的综合——比较问题】
1、一个单位有620人到温泉山庄度假。1辆大客车能坐58人,11辆大客车能一次送走这些人吗?
2、小梦和小欣整理照片。一共有238张照片。每页可插6张要插多少页?如果一本相册有24页,1本相册能插得下这些照片吗?2本呢?
最简单的数学应用题 篇2
1. 某地收取电费的标准是:每月用电量不超过50度,每度收5角;如果超出50度,超出部分按每度8角收费.每月甲用户比乙用户多交3元3角电费,这个月甲、乙各用了多少度电?
因为33÷8=4...1,33÷5=6...3,即都有余数,所以,既不可能两户都达到或超过50度用电量,也不可能两户都未达到50度用电量,因此只有一种情况:
2. 王师傅计划用2小时加工一批零件,当还剩160个零件时,机器出现故障,效率比原来降低1/5,结果比原计划推迟20分钟完成任务,这批零件有多少个?
效率比原来降低1/5,即变为原来的4/5,那么所用时间就是原来的5/4,比原来多用:
5/4-1=1/4
所以,推迟的20分钟就是原来完成160个零件所用时间的1/4。原来完成160个零件需要:
20/(1/4)=80分钟
这批零件共有:160/(80/120)=240个。
160个的时间比是4:5,相差1份,是20分钟
4份是80分钟
160个前做了120-80=40分,
80分160个,40分160/2=80
160+80=240
我也来做一种方法:
推迟的20分钟,即1/3小时相当于后来用时的1/5,所以,后来用时1/3÷1/5=5/3小时
原来的工效做160个零件就用了5/3-1/3=4/3小时。
所以,每小时可以完成160÷4/3=120个
2小时完成任务,这批零件就有120×2=240个
33. 妈妈给了红红一些钱去买贺年卡,有甲、乙、丙三种贺年卡,甲种卡每张0.50元,丙种卡每张1.20元.用这些钱买甲种卡要比买乙种卡多8张,买乙种卡要比买丙种卡多买6张.妈妈给了红红多少钱?乙种卡每张多少钱?
买甲比买丙多8+6=14张,而丙每张比甲贵0.70元,多买14张甲一共0.50*14=7元,所以可以支付丙7/0.70=10张,钱数一共是1.20*0=12元,可以买乙10+6=16张,所以乙的价钱是12/16=0.75元。
34. 一位老人有五个儿子和三间房子,临终前立下遗嘱,将三间房子分给三个儿子各一间.作为补偿,分到房子的三个儿子每人拿出1200元,平分给没分到房子的两个儿子.大家都说这样的分配公平合理,那么每间房子的价值是多少元?
我的思路是这样的。
三个儿子共拿出1200×3=3600元,
这3600元刚好就是两个儿子应该分得的钱。
每个儿子应该分得3600÷2=1800元。
三间房子共值1800×5=9000元,
那么每间房子值9000÷3=3000元。
再做一种思路:
每人应该分得3÷5=3/5间房子,那么分得房子的就多分了1-3/5=2/5间
也就是说2/5间房子值1200元,所以每间房子值1200÷2/5=3000元
继续分享算法:
如果还有5-3=2间房子,每人都分得房子,那么就要拿出1200×5=6000元
所以,每间房子值6000÷2=3000元。
35. 小明和小燕的画册都不足20本,如果小明给小燕A本,则小明的画册就是小燕的2倍;如果小燕给小明A本,则小明的画册就是小燕的3倍.原来小明和小燕各有多少本画册?
我的思考如下:
小燕两次相差2A,且两次相差总画册的1/3-1/4=1/12
当A=1时,两人的总和是2÷1/12=24本,少于38本
当A=2时,两人的总和是4÷1/12=48本,多于38本
所以,A=1
第一次交换,小燕有24×1/3=8本,
原来小燕有8-1=7本
小明有24-7=17本
36. 有红、黄、白三种球共160个.如果取出红球的1/3,黄球的1/4,白球的1/5,则还剩120个;如果取出红球的1/5,黄球的1/4,白球的1/3,则剩116个,问(1)原有黄球几个?(2)原有红球、白球各几个?
先理清思路:根据题意可以得出下面的关系。
37. 爸爸、哥哥、妹妹三人现在的年龄和是64岁,当爸爸的年龄是哥哥年龄的3倍时,妹妹是9岁.当哥哥的年龄是妹妹年龄的2倍时,爸爸是34岁.现在三人的年龄各是多少岁?
充分利用年龄差来解答问题。
妹妹:9岁, 哥哥:兄妹差+9 ,爸爸:(兄妹差+9)×3
妹妹:兄妹差, 哥哥:兄妹差×2,爸爸:34岁
因为爸爸和哥哥的年龄差也将恒定不变。
所以,(兄妹差+9)×2=34-兄妹差×2
所以,兄妹差是(34-2×9)÷4=4岁
即当妹妹9岁时,哥哥4+9=13岁,爸爸13×3=39岁
三人年龄和是9+13+39=61岁
所以,再过(64-61)÷3=1年,年龄和就是64岁了。
所以,现在妹妹9+1=10岁,哥哥13+1=14岁,爸爸39+1=40岁
38. B在A,C两地之间.甲从B地到A地去送信,出发10分钟后,乙从B地出发去送另一封信.乙出发后10分钟,丙发现甲乙刚好把两封信拿颠倒了,于是他从B地出发骑车去追赶甲和乙,以便把信调过来.已知甲、乙的速度相等,丙的速度是甲、乙速度的3倍,丙从出发到把信调过来后返回B地至少要用多少时间?
我选择让丙先去追后出发的乙,10÷(3-1)=5分钟追上,
拿到信后去追甲,甲乙相距甲行10+10+10+5+5=40分钟的路程,
丙用40÷(3-1)=20分钟追上甲
交换信后返回追乙,这时乙丙相距乙行40+20×2=80分钟的路程,
丙用80÷(3-1)=40分钟追上乙,把信交给乙。
所以,共用了5+20+40=65分钟。
乙共行了65+10=75分钟,丙回到B地还要75÷3=25分钟。
所以共用去65+25=90分钟
又想到一个思路,追上并返回。
追上乙并返回,需要10÷(3-1)×2=10分钟
追上甲并返回,需要10×3÷(3-1)×2=30分钟
再追上乙并返回,需要(10×2+30)÷(3-1)×2=50分钟
共用10+30+50=90分钟
39. 甲、乙两个车间共有94个工人,每天共加工1998竹椅.由于设备和技术的不同,甲车间平均每个工人每天只能生产15把竹椅,而乙车间平均每个工人每天可以生产43把竹椅.甲车间每天竹椅产量比乙车间多几把?
假设全是甲车间的工人,共生产:94*15=1410把;
40. 甲放学回家需走10分钟,乙放学回家需走14分钟.已知乙回家的路程比甲回家的路程多1/6,甲每分钟比乙多走12米,那么乙回家的路程是几米?
如果甲的速度和乙相同,那么甲的路程应该是乙的10/14=5/7,比乙少2/7;
而实际甲是乙的6/7,比乙少1/7,是因为甲每分钟比乙多走12米、10分钟共多走12*10=120米。
所以,这120米就是乙路程的2/7-1/7=1/7;
乙回家的路程为:120/(1/7)=840米。
我也做两种基本的方法
方法一:
乙行甲那么远的路,就要14÷(1+1/6)=12分钟
所以甲回家有12÷(1/10-1/12)=720米
所以乙回家的路程是720×(1+1/6)=840米
方法二:
甲行乙那么所需要的时间是10×(1+1/6)=35/3分钟
所以乙回家的路程是12÷(3/35-1/14)=840米
比实际少生产:1998-1410=588把;
一个甲车间工人换成乙车间的,多生产:43-15=28把;
乙车间共有工人:588/28=21人;
甲车间每天比乙车间多生产:1998-21*43*2=192把。
红球×1/3+黄球×1/4+白球×1/5=160-120=40………………①
红球×1/5+黄球×1/4+白球×1/3=160-116=44………………②
红球+黄球+白球=160………………………………………………③
利用初中的代数消元法思想来解答。
如果按照第一种方案,取160÷40=4次刚好取完,
红球还差4/3-1=1/3,白球就多出1-4/5=1/5,黄球取完了,
说明红球的1/3和白球的1/5相等,红球和白球的个数比是3:5
按照两种方案的比较发现,白球的1/3-1/5=2/15比红球的2/15多4个
即白球比红球多4÷2/15=30个
所以红球有30÷(5-3)×3=45个,白球有45+30=75个
黄球就是160-45-75=40个
甲超过了50度,乙未达到 50度。
因为33=5*5+8,可以得出:
甲用电:50+1=51度,乙用电:50-5=45度。
如果都超过50度,那么相差就应该是8的倍数,显然33不是8的倍数;
如果都没有超过50度,那么相差就应该是5的倍数,同样33也不是5的倍数。
因此,甲50度以上,乙50度以下。
33-8×n的得数是5的倍数(从个位数字可以得出)只有33-8×1=25=5×5符合要求。
所以甲50+1=51度,乙50-5=45度
最简单的数学应用题 篇3
利润=售出价-成本
利润率=利润÷成本×100%=(售出价÷成本-1)×100%
涨跌金额=本金×涨跌百分比
折扣=实际售价÷原售价×100%(折扣<1)
利息=本金×利率×时间
税后利息=本金×利率×时间×(1-20%)
盈亏问题 (盈+亏)÷两次分配量之差=参加分配的份数 (大盈-小盈)÷两次分配量之差=参加分配的份数
(大亏-小亏)÷两次分配量之差=参加分配的.份数
1、 每份数×份数=总数 总数÷每份数=份数 总数÷份数=每份数
2、 1倍数×倍数=几倍数 几倍数÷1倍数=倍数 几倍数÷倍数=1倍数
3、 速度×时间=路程 路程÷速度=时间 路程÷时间=速度
4、 单价×数量=总价 总价÷单价=数量 总价÷数量=单价
5、 工作效率×工作时间=工作总量 工作总量÷工作效率=工作时间 工作总量÷工作时间=工作效率
6、 加数+加数=和 和-一个加数=另一个加数
7、 被减数-减数=差 被减数-差=减数 差+减数=被减数
8、 因数×因数=积 积÷一个因数=另一个因数
9、 被除数÷除数=商 被除数÷商=除数 商×除数=被除数 总数÷总份数=平均数
5 三角形 面积=底×高÷2 三角形高=面积 ×2÷底 三角形底=面积 ×2÷高
6 平行四边形 面积=底×高
7 梯形 面积=(上底+下底)×高÷2
8 圆形(1)周长=直径×∏=2×∏×半径(2)面积=半径×半径×∏
体积=侧面积÷2×半径
10 圆锥体 体积=底面积×高÷3
和差问题的公式 (和+差)÷2=大数 (和-差)÷2=小数
和倍问题 和÷(倍数-1)=小数 小数×倍数=大数 (或者 和-小数=大数)
差倍问题 差÷(倍数-1)=小数 小数×倍数=大数 (或 小数+差=大数)
相遇问题:相遇路程=速度和×相遇时间 相遇时间=相遇路程÷速度和 速度和=相遇路程÷相遇时间
追及问题:追及距离=速度差×追及时间 追及时间=追及距离÷速度差 速度差=追及距离÷追及时间
流水问题:顺流速度=静水速度+水流速度 逆流速度=静水速度-水流速度 静水速度=(顺流速度+逆流速度)÷2
水流速度=(顺流速度-逆流速度)÷2
浓度问题:溶质的重量+溶剂的重量=溶液的重量 溶质的重量÷溶液的重量×100%=浓度 溶液的重量×浓度=溶质的重
溶质的重量÷浓度=溶液的重量
植树问题
1 非封闭线路上的植树问题主要可分为以下三种情形:
⑴如果在非封闭线路的两端都要植树,那么:
株数=段数+1=全长÷株距-1
全长=株距×(株数-1)
株距=全长÷(株数-1)
⑵如果在非封闭线路的一端要植树,另一端不要植树,那么:
株数=段数=全长÷株距
全长=株距×株数
株距=全长÷株数
⑶如果在非封闭线路的两端都不要植树,那么:
株数=段数-1=全长÷株距-1
全长=株距×(株数+1)
株距=全长÷(株数+1)
2 封闭线路上的植树问题的数量关系如下
株数=段数=全长÷株距
最简单的数学应用题 篇4
1、李红早晨7点从家出发去学校,她走了2分钟后发现忘带语文书了,她立刻回家拿了书又立即往学校赶,这样她到校时是7点20分。如果她每分钟走80米,李红家离学校有多远?
2、一辆货车从甲城往乙城运货,每小时行42千米,预计6小时到达。但行到一半时,由于机器出了故障,用了1小时进行修理,如果仍要求在预计时间到达乙地,余下的路程必须每小时行多少千米?
3、一辆卡车上午10时从南京出发开往浙江,原计划每小时行驶60千米,下午1时到达,但实际晚点2小时。这辆汽车实际每小时行驶多少千米?
4、明明家离学校有200米,他走了4分钟,如果用同样的速度,从学校到少年宫明明走了12分钟。学校到少年宫有多少米?
5、小李骑摩托车以每分钟650米的速度从甲村到乙村去办事,他骑出5分钟后,因忘记带东西立即返回去拿,然后又立即出发去乙村,这样他一共用了25分钟才到达乙村。两个村相距有多少米?
6、一列火车早上5时从甲地开往乙地,下午1时可以到达。开汽车从甲地到乙地要多用2小时,如果汽车每小时行52千米,甲乙两地相距多少千米?
7、张青平时都用每分钟66米的速度从家出发去上学,这样他10分钟就能到学校。有一天他走到一半时,遇到一个熟人讲了2分钟话,如果他仍要按时到校,余下的路程每分钟要走多少米?
8、小明和小红的家在同一条大街的两头。如果小明每分钟走40米,小红每分钟走30米,他们两人约好同时出发,相向而行,经过3分钟两人相遇。他们两家相距多远?
9、一列客车和一列火车分别从两座城市同时出发,相向而行,客车每小时行45千米,火车每小时行35千米,经过8小时,两车在途中相遇。求:两座城市相距多远?
10、一架飞机以每小时420千米的速度从A城出发,飞向B城。一小时后,另一架飞机以每小时小时460千米的速度从B城飞往A城,经过3小时遇到从A城飞来的飞机。AB两城相距多少千米?
11、小红和小明从相距1500米的两地同时出发,相向而行,小红每分钟走55米,小明每分钟比小红多行15米。经过10分钟后,两人相遇了吗?
12、敌舰在我军舰前面以每分钟120米的速度逃跑,我军舰以每分钟180米的速度在后面追,20分钟后追上敌舰。问:一开始敌舰在我军舰前多少米?
13、敌舰在我军舰前1500米处逃跑,我军舰在后面追。敌舰每分钟行150米,我军舰每分钟行180米,多少分钟才能追上?
14、小丽和小张都从东村往西村走,小丽用每分钟120米的速度先走了5分钟后,小张才用每分钟150的速度出发,结果两人同时到达。东西两村相距多远?
15、小红和小明都从甲村到乙村去办事,小红以每分120米的速度先走了一会,小明以每分140米的速度在后面追,用5分钟就追上了。小红先走了多少米?
16、甲飞机每小时飞行400千米,乙飞机每小时飞行430千米。它们同时从A城飞往B城,4小时后它们相隔多少千米?
17、一辆卡车在一辆轿车前52千米处以每小时36千米的速度开往甲地。这辆轿车每小时行40千米,多少小时后才能追上卡车?
22、夜行军时,甲队同学由于帮助受伤的同学,落在了乙队同学后面150米,乙队同学仍以每分钟80米的速度前进。老师要求甲队同学以每分钟110米的速度跑步追及,几分钟可以追上乙队?
23、一辆汽车以每小时30千米的速度从甲地开往乙地,开出4小时后,一列火车以每小时90千米的速度从甲地开往乙地,结果同时到达。甲乙两地相距多远?
24、上海路小学有一个300米的环形跑道。洋洋和宁宁同时从起跑线起跑,洋洋每秒跑6米,宁宁每秒跑4米,多少秒后洋洋能追上宁宁?这时两人各跑了多少米?
最简单的数学应用题 篇5
1、甲、乙两人分别从A、B两地同时出发,相向而行,乙的速度是甲的2/3,两人相遇后继续前进,甲到达B地,乙到达A地立即返回,已知两人第二次相遇的地点距离第一次相遇的地点是3000米,求A、B两地的距离.
解:第一次相遇时,两人合行了一个全程,其中乙行了全程的2÷(2+3)=2/5
第二次相遇时,两人合行了3个全程,其中乙行了全程的2/5×3=6/5
两次相遇点之间的距离占全程的2-6/5-2/5=2/5
所以全程是3000÷2/5=7500米。
解乙的速度是甲的2/3即甲速:乙速=3:2所以第一次相遇时甲走了全程的3/5,乙走了全程的2/5
第二次相遇的地点距第一次相遇甲共走了2倍全程的3/5=6/5,乙走了2倍全程的2/5=4/56/5-4/5=2/5,即相差全程的2/5A、B两地的距离=3000/(2/5)=7500米
综合:3000/[2*3/(2+3)-2*2/(3+2)]=50(千米)
76.一条船往返于甲、乙两港之间,已知船在静水中的速度为9千米/小时,平时逆行与顺行所用时间的比为2:1.一天因下雨,水流速度为原来的2倍,这条船往返共用10小时,问甲、乙两港相距多少千米?
C顺水速度是逆水速度的2倍,那么逆水速度就是水流速度的2倍,静水速度就是水流速度的3倍,所以水流速度是9÷3=3千米/小时
下雨时,水流速度是3×2=6千米/小时,
逆行速度是9-6=3千米/小时
顺行速度是9+6=15千米/小时
所以往返时,逆行时间和顺行时间比是5:1
所以顺行时间是10÷(5+1)=5/3小时
所以甲乙两港相距5/3×15=25千米
解:无论水速多少,逆水与顺水速度和均为9*2=18
故:
水速FlowSpeed=18/3/2=3;
船速ShipSpeed=FlowSpeed+18/3=9;
whenrains,Flowspeed=6;
顺水s1=9+6=15;
逆水s2=9-6=3;
顺水单程时间10*(3/(15+3))=5/3;
so,相距5/3*15=25km
2.某学校入学考试,确定了录取分数线,报考的学生中,只有1/3被录取,录取者平均分比录取分数线高6分,没有被录取的同学其平均分比录取分数线低15分,所有考生的平均分是80分,问录取分数线是多少分?
解:假设每组三人,其中3×1/3=1人被录取。每组总得分80×3=240分。录取者比没有被录取者多6+15=21分。所以,没有被录取的分数是(240-21)÷3=73分所以,录取分数线是73+15=88分
解:因为没录取的学生数是录取的学生数的:
(1-1/3)/1/3=2倍,二者的平均分之间相差:15+6=21分的距离,所以,在均衡分数时,没录取的学生平均分每提高一分,录取的学生的平均分就要降低2分,这样二者的分差就减少了3分,21/3=7,即要进行7次这样的均衡才能达到平均分80分,在这个均衡过程中,录取的学生的平均分降低了:2*7=14分,
所以,录取分数线是:80+14-6=88分,
3.一群学生搬砖,如果有12人每人各搬7块,其余的每人搬5块,那么最后余下148块;如果有30人每人各搬8块,其余的每人搬7块,那么最后余下20块.问学生共有多少人?砖有多少块?
解:如果每人搬7块,就会余下30×(8-7)+20=50块
所以搬5块的人有(148-50)÷(7-5)=49人
所以学生共有12+49=61人,砖有61×7+50=477块。
解:12人每人各搬7块,当他们搬8块的时候,多搬了12块
18人每人各搬5块,当他们搬动8块的时候,多搬了18*3=54块
所以30人多搬了54+12=66块其余人搬动了148-20-66=62块
而这些其它人每人多搬动了2块,所以其他人的人数为62/2=31
所以,一共有学生61人
砖块的数量:12*7+49*5+148=477
解:把30人分成12人和18人两部分,12人每人各搬7块,若他们搬8块,则多搬了12*1=12块,18人每人各搬5块,若他们搬8块,则多搬了18*3=54块,
所以30人多搬了54+12=66块其余人搬动了148-20-66=62块,而这些其它人每人多搬动了7-5=2块,所以其他人的人数为62÷2=31所以,一共有学生61人砖块的数量:12*7+49*5+148=477块