【热】医院感染的试题及答案之一。
1、医院发生以下哪些情形时,需要2小时内上报县级卫生行政主管部门和疾控部门( )
A、发生新发病原体的医院感染
B、发生10例以上医院感染暴发
C、发生肺炭疽医院感染病例
D、发生可能造成重大公共影响或者严重后果的医院感染
2、医院发生以下哪些情形时,需要12小时内上报县级卫生行政主管部门和疾控部门( )
A、发生5例疑似医院感染暴发或3例以上医院感染暴发。
B、发生10例以上医院感染暴发。
C、发生肺炭疽医院感染病例。
D、发生可能造成重大公共影响或者严重后果的医院感染。
3、关于医院感染暴发报告与处置表述正确的是( )
A、医院发生医院感染暴发时,应及时采取有效处置措施,控制感染源,切断传播途径,实施医疗救治。
B、医院感染暴发报告范围,包括医院感染暴发和疑似医院感染暴发。
C、医院法人代表为医院感染暴发报告管理第一责任人。
D、发生特殊病原体的医院感染,应在2小时内上报所在地县级卫生行政部门和疾控中心
延伸阅读
最新数学中的应用题12篇
最新数学中的应用题 篇1
(1)平均数问题:平均数是等分除法的发展。
解题关键:在于确定总数量和与之相对应的总份数。
算术平均数:已知几个不相等的同类量和与之相对应的份数,求平均每份是多少。数量关系式:数量之和÷数量的个数=算术平均数。
加权平均数:已知两个以上若干份的平均数,求总平均数是多少。
数量关系式 (部分平均数×权数)的总和÷(权数的和)=加权平均数。
差额平均数:是把各个大于或小于标准数的部分之和被总份数均分,求的是标准数与各数相差之和的平均数。
数量关系式:(大数-小数)÷2=小数应得数
最大数与各数之差的和÷总份数=最大数应给数
最大数与个数之差的和÷总份数=最小数应得数。
例:一辆汽车以每小时 100 千米 的速度从甲地开往乙地,又以每小时 60 千米的速度从乙地开往甲地。求这辆车的平均速度。
分析:求汽车的平均速度同样可以利用公式。此题可以把甲地到乙地的路程设为“
(2) 归一问题:已知相互关联的两个量,其中一种量改变,另一种量也随之而改变,其变化的规律是相同的,这种问题称之为归一问题。
根据求“单一量”的步骤的多少,归一问题可以分为一次归一问题,两次归一问题。
根据球痴单一量之后,解题采用乘法还是除法,归一问题可以分为正归一问题,反归一问题。
一次归一问题,用一步运算就能求出“单一量”的归一问题。又称“单归一。”
两次归一问题,用两步运算就能求出“单一量”的归一问题。又称“双归一。”
正归一问题:用等分除法求出“单一量”之后,再用乘法计算结果的归一问题。
反归一问题:用等分除法求出“单一量”之后,再用除法计算结果的归一问题。
解题关键:从已知的一组对应量中用等分除法求出一份的数量(单一量),然后以它为标准,根据题目的要求算出结果。
数量关系式:单一量×份数=总数量(正归一)
总数量÷单一量=份数(反归一)
例 一个织布工人,在七月份织布 4774 米 , 照这样计算,织布 6930 米 ,需要多少天?
分析:必须先求出平均每天织布多少米,就是单一量。 =
(,通过求总数量求得单位数量的个数(或单位数量)。
特点:两种相关联的量,其中一种量变化,另一种量也跟着变化,不过变化的规律相反,和反比例算法彼此相通。
数量关系式:单位数量×单位个数÷另一个单位数量 = 另一个单位数量
单位数量×单位个数÷另一个单位数量= 另一个单位数量。
例 修一条水渠,原计划每天修 800 米 , 6 天修完。实际 4 天修完,每天修了多少米?
分析:因为要求出每天修的长度,就必须先求出水渠的长度。所以也把这类应用题叫做“归总问题”。不同之处是“归一”先求出单一量,再求总量,归总问题是先求出总量,再求单一量。
(4) 和差问题:已知大小两个数的和,以及他们的差,求这两个数各是多少的应用题叫做和差问题。
解题关键:是把大小两个数的和转化成两个大数的和(或两个小数的和),然后再求另一个数。
解题规律:(和+差)÷2 = 大数
大数-差=小数
(和-差)÷2=小数
和-小数= 大数
例 某加工厂甲班和乙班共有工人 94 人,因工作需要临时从乙班调 46 人到甲班工作,这时乙班比甲班人数少 12 人,求原来甲班和乙班各有多少人?
分析:从乙班调 ÷ ,乙班在调出 ,甲班为 9 4 - 8
最新数学中的应用题 篇2
1、小明折了9只纸飞机,比小军少折3只,小军折了几只纸飞机?
2、池塘的荷叶上有6只青蛙,跳来了3只,又跳走了4只。池塘里还有几只青蛙?
3、小丁丁做口算题对了21道,错了14道。他一共做了几道口算题?
4、篮子里有10个苹果,被小丁丁吃掉1个,又被爸爸吃掉2个。现在还有多少个?
5、妈妈买来10个苹果,小丁丁和爸爸各吃了2个。现在还有多少个?
6、小红有16本故事书,比小芳多3本,比小明少两本。小芳和小明各有多少本故事书?
7、湖中有8只天鹅,飞走了2只,又飞来了6只,湖中还有几只天鹅?
8、盒子里有一些月饼,爸爸、妈妈各吃了1个,小明吃了2个,还剩5个。盒子里原来有几个月饼?
9、商店里有20瓶汽水,上午卖掉了9瓶,下午卖掉的和上午一样多,一共卖掉几瓶?还剩几瓶?
10、小丽有10支铅笔,小云有16支铅笔。小云送给小丽几支后,两人的铅笔同样多?
11.教室里有男生8人,女生10人,一共有几人?教室里有18人,走了5人,还剩几人?
12.一根绳子对折后长7米,这根绳子原来长多少米?这根绳子用掉6米后,还剩几米?
13.小明看一本故事书,第一天看了6页,第二天看了10页,第三天从第几页看起?
14.小丽排队做操,从前面数起他是第5个,从后面数起他也是第5个,这一排一共有多少个学生?
15.军军从一楼走到二楼需要1分钟,用这样的速度他从一楼走到五楼,再从五楼回到一楼共需要多少分钟?
16.明明从家走到学校要走6千米,这一天他走到一半,返回家拿作业本,又立即赶回学校,这一天他从家到学校一共走了多少米?
17. 车上原有20人,到站下车8人,上车5人,这时车上有多少人?
18.原来有18个苹果,红红吃了一些,还剩下9个,小红吃了几个苹果?
19.猫妈妈钓来一些鱼,小花猫吃了一条,把剩下的'一半分给了小白猫,小花猫又吃了1条,再把剩下的一半分给了小黑猫,这时,小花猫还有4条鱼,你能算出猫妈妈一共掉了多少条鱼吗?
20.小军吃了5个苹果,还剩下3个,小军原来有多少个苹果?
参考答案
1. 12
2. 5
3. 35
4. 7
5. 6
6. 13 18
7. 12
8. 9
9. 18 2
10. 3
11. 18 13
12. 14 8
13. 17
14. 9
15. 8
16. 9
17. 17
18. 9
19. 19
20. 8
最新数学中的应用题 篇3
例1:
自行车和汽车共有 ,自行车和汽车各有几辆?
假设一:
假设 24 辆车都是汽车,那么按每辆汽车 4 只轮胎计算,轮胎只数应为
,怎么会多算 42 只轮胎,这是由于假定自行车的辆数,把它当作汽车来计算。
每辆自行车是 ÷(=42÷2
=
自行车有 21 辆,而自行车和汽车总计是 24 辆,减法计算,可得汽车的 辆数:
答:自行车有 21 辆,汽车有 3 辆。 假设二:
假设 。这比题中 的“,怎么会少算 6 只轮胎,这是由于假 定汽车的辆数当作自行车来计算。每辆汽车少算 2 只轮胎,那么少算 6 只轮 胎,就可求出有几辆汽车算作自行车。据此,
列式计算(÷(
=6÷2
=
既知汽车有 3 辆,汽车和自行车总计 24 辆,减法计算,可得自行车辆数
例2:
某农机厂制造一批农具,原计划 18 天完成,实际每天比计划多制造 50 件,照这样做了 12 天,就超过原计划产量 240 件,这批农具原计划制造多少 件?
分析:
这道题要求原计划制造多少件,不是从题目的条件来看,既不知道原计 划每天制造多少件,也不知道实际每天制造多少件,所以要想按照一般的数 量关系,通过分析来寻找解题线索,是一个比较困难的问题,在这种情况下, 可以用假设法来解答。
题目告诉我们,“原计划 18 天完成”我们就假设实际生产了 18 天。那 么,按照题目的条件“实际每天比计划多制造 50 件”来计算的话,应该比原 计划产量多制造:
根据题意,制造 。制造的 件数相差了 ,这就是说,按实际每天制造的件数计算,6 天可以制造农具 660 件,我们可以从这两个相差数中,算出实际每天制造的 件数是:
通过假设,找到了解开这道题目的一个重要条件,即实际每天制造 ,因为 12 天制造的件数比原计划产量多 240 件,所以原计划制造的件数就是:
列综合式计算:(÷(×12-240
=660÷6×12-240
=1320-240
= 答:原计划制造农具 1080 件。
当求出了实际每天制造 110 件之后,下一步也可以这样思考: 根据已知条件“实际每天比计划多制造 50 件”,可求得原计划每天制造的件数:
。
再根据已知条件“原计划 18 天完成”即可求得原计划制造的件数:
列综合式计算[(÷(-50]×18
=[660÷6-50]×18
=60×18
= 答:略。
由上例看出用假设法求出实际每天制造的件数,是解这道题的关键。
例3:
勤风印刷厂,装订车间有 40 个工人,每分钟每个男工装订 3 本书,每个 女工装订 1.5 本书,男女工人 5 分钟一共装订了 435 本书。问男女工人各装 订多少本?
假设一:
假设每个女工每分钟装订本数和男工一样多,每分钟也装订 。
由题中所给条件“男女工人 。由此看出,假设每个女工每分钟装订本数和男工一样 多,要比实际多出 ,而每个女工每分钟装订本数比实际多算
。那么,多少个女工多算了 ÷(
=(÷1.5
=33÷1.5
=
全车间一共是 40 人,女工有 22 人,可用减法计算,可得出男工人数:
每个男工每分钟装订 3 本,18 个男工 5 分钟装订的本数是:
每个女工每分钟装订 1.5 本,22 个女工 5 分钟装订的本数是:
答:男工装订 270 本,女工装订 165 本。 假设二:
假设每个男工每分钟装订本数和每个女工一样多,每分钟装订 比题中说的每分钟装 订 少 。
由于假设,每个男工装订本数比实际少算了 ,那么,多 少个男工少算 ÷
(
=(÷1.5
=27÷1.5
=。
女工人数:
以下解答步骤和假设一相同,由此从略。
有一种古老的典型算术题,叫做鸡兔同笼问题,不知道你听说过没有? 这是一道有趣的题目,是用假设法解答的。如:
例4:
鸡兔同笼,共有头 34 只,脚 118 只,鸡兔各有几只?
假设一:
假设笼里装的全部是兔子,由于每只兔有 =136 只脚,比实际的 118 只脚多了 18 只脚,因每只兔比每只鸡多2 只脚,就可以求出鸡的只数。
(÷(
=18÷2
=。 兔子的只数:
答:鸡有 9 只,兔子有 25 只。
假设二:
假设笼里装的全部是鸡,由于每只鸡有 =68 只脚,比实际的 118 只脚少了 50 只脚,因每只鸡比每只兔少 2 只 脚,就可以先求出兔子的只数:
(÷(
=50÷2
= 鸡的只数:
答:鸡有 9 只,兔子有 25 只
例5:
一列快车从甲地到乙地要用 10 小时,一列慢车从乙地到甲地要用 15 小 时,每小时快车比慢车多行 12 公里,两车同时从两地相向而行,几小时相遇? 相遇时,快车和慢车各行多少公里?
假设一:
假设快车和慢车同时从甲地出发到乙地,都行 10 小时,题中条件指出: 快车从甲地到乙地要 10 小时;慢车行全程为 15 小时,所以当我们假设两车 同时从甲地开出 10 小时后,快车到达了乙地,而慢车还在途中:
由于每小时快车比慢车多行 ,快车到达乙地,慢车还要行 5 小时,才能到 达乙地,即还要行 120 公里。据此,可以推算出慢车的速度:
=120÷5
=
知道了慢车每小时行 24 公里,又知道快车每小时比慢车多行 12 公里, 就可用加法计算出快车的速度:
知道了快车每小时行 36 公里,又知道从甲地到乙地要行 10 小时,用乘 法计算可得全程是:
。 用慢车速度也可以求出全程:
现在,我们再来按“两车同时从两地相向而行”来考虑多少小时相遇。 由“路程÷速度和=相遇时间”可得:
=。
快车和慢车 6 小时可以相遇;相遇时,快车和慢车各行多少公里?由:
“速度×时间”可得:
答:快车和慢车 6 小时相遇;相遇时,快车行了 216 公里,慢车行了 144 公里。
最新数学中的应用题 篇4
[专题介绍]
工厂和商店有时减价出售商品,通常我们把它称为“打折扣”出售,几折就是百分之几十。
利润问题也是一种常见的百分数应用题,商店出售商品总是期望获得利润,一般情况下,商品从厂家购进的价格称为本价,商家在成本价的基础上提高价格出售,所赚的钱称为利润,利润与成本的百分比称之为利润率。期望利润=成本价×期望利润率。
[经典例题]
例1、某商店将某种DVD按进价提高35%后,打出“九折优惠酬宾,外送50元出租车费”的广告,结果每台仍旧获利208元,那么每台DVD的进价是多少元?(B级)
解:定价是进价的1+35%
打九折后,实际售价是进价的135%×90%=121.5%
每台DVD的实际盈利:208+50=258(元)
每台DVD的进价258÷(121.5%-1)=1200(元)
答:每台DVD的进价是1200元
例2:一种服装,甲店比乙店的进货便宜10%甲店按照20%的利润定价,乙店按照15%的利润定价,甲店比乙店的出厂价便宜11.2元,问甲店的进货价 是多少元?(B级)
分析:
解:设乙店的成本价为1
(1+15%)是乙店的定价
(1-10%)×(1+20%)是甲店的定价
(1+15%)-(1-10%)×(1+20%)=7%
11.2÷7%=160(元)
160×(1-10%)=144(元)
答:甲店的进货价为144元。
例3、原来将一批水果按100%的利润定价出售,由于价格过高,无人购买,不得不按38%的利润重新定价,这样出售了其中的40%,此时因害怕剩余水果会变质,不得不再次降价,售出了全部水果。结果实际获得的总利润是原来利润的30.2%,那么第二次降价后的价格是原来定价的百分之几?(B级)
分析:
要求第二次降价后的价格是原来定价的百分之几,则需要求出第二次是按百分之几的利润定价。
解:设第二次降价是按x%的利润定价的。
38%×40%+x%×(1-40%)=30.2%
X%=25%
(1+25%)÷(1+100%)=62.5%
答:第二次降价后的价格是原来价格的62.5%
最新数学中的应用题 篇5
221. 瓶中装有浓度为15%的酒精溶液1000克.现在又分别倒入100克和400克的A,B两种酒精溶液,瓶里的浓度变成了14%.已知A种酒精溶液是B种酒精溶液浓度的2倍.那么A种酒精溶液的浓度是多少?
三种混合后溶液重1000+100+400=1500克,含酒精14%×1500=210克,原来含酒精15%×1000=150克,说明AB两种溶液共含酒精210-150=60克。
由于A的浓度是B的2倍,因此400克B溶液的酒精含量相当于400÷2=200克A溶液酒精的含量。所以A溶液的浓度是60÷(100+200)=20%。
222. 某商店分别花同样多的钱,购进甲、乙、丙三种不同的糖果.已知甲、乙、丙三种糖果每千克的价格分别是9.60元、16元、18元.如果把这三种糖果混合成什锦糖,按20%的利润来定价,那么这种什锦糖每千克定价是多少元?
3÷(1/9.6+1/16+1/18)×(1+20%)=16.2元
223. 甲地到乙地都是坡路,有上坡也有下坡.某人骑自行车往返甲、乙两地共用4.5小时,若已知此人上坡时速度为12千米/小时,下坡速度为18千米/小时,那么甲、乙两地全长多少?
去是上坡返回就是下破,因此往返36千米共需要36÷12+36÷18=5小时,所以1小时可以往返36÷5=7.2千米。4.5小时可以往返7.2×4.5=32.4千米。
224. 一项工程,甲一人需1小时36分完成,甲、乙二人合作要1小时完成.现在由甲一人完成1/12以后,甲、乙二人一起干,但因途中甲休息,全部工作用了1小时38分完成,那么由乙单独做那部分占全部工程的几分之几?
解:乙1小时做的相当于甲36分钟做的,乙和甲的工效比是36:60=3:5。
甲做1/12用了1/12×96=8分钟。
后来用了98-8=90分钟,如果合做90分钟就要完成90÷60=3/2,实际少完成了3/2-(1-1/12)=7/12,说明甲休息这段时间可以做7/12。
这段时间就是乙单独做的,能完成7/12×3/5=7/20。
225. 设A,B,C三人沿同一方向,以一定的速度绕校园一周的时间分别是6、7、11分.由开始点A出发后,B比A晚1分钟出发,C比B晚5分钟出发,那么A,B,C第一次同时通过开始出发的地点是在A出发后几分钟?
从条件可以知道,C出发时,A刚好行了5+1=6分钟,即一圈,也就是说,A和C再次同时经过出发点时,是6×11=66的倍数分钟后。
由于B还需要7-5=2分钟才能通过,说明要满足66的倍数除以7余2分钟。当66×3=198分钟时,198÷7=28……2分钟,满足条件。
因此ABC第一次同时通过出发地点是A出发后6+198=204分钟的时候。
226. 某班同学分成若干组去植树,若每组植树N棵,且N为质数,则剩下树苗20棵,若每组植树9棵,则还缺少2棵,这个班的同学共分成几组?
解:可以看出N是小于9的质数,相差20+2=22。
说明组数是22的约数,9-N也是22的约数。
9-N小于11,所以9-N=2。
所以组数就是22÷2=11组。
227. 学校举行计算机汉字输入技能竞赛,原计划评选出一等奖15人,二等奖20人,现将一等奖中的后5人调整为二等奖,这样一等奖获得者的平均速度提高了8字/分,二等奖获得者平均速度提高了6字/分,那么原来一等奖平均速度比二等奖平均速度多多少?
原来一等奖的平均分比这5人的平均分高8×(15-5)÷5=16字
原来二等奖的平均分比这5人的平均分低6×(20+5)÷5=30字
那么原来一等奖的平均分比二等奖高16+30=46字
228. 红光农场原定9时来车接601班同学去劳动,为了争取时间,8时同学们就从学校步行向农场出发,在途中遇到准时来接他们的汽车,于是乘车去农场,这样比原定时间早到12分钟.汽车每小时行48千米,同学们步行的速度是每小时几千米?
学生步行的路程,汽车需要12÷2=6分钟,说明是在9:00前6分钟接到学生,即8:54分,说明学生行了54分钟。所以汽车的速度是步行的54÷6=9倍,因此步行的速度是每小时行48÷9=16/3千米。
229. 甲、乙两地公路长74千米,8:15一辆汽车从甲地到乙地,半个小时后,又有一辆同样速度的汽车从甲地开往乙地.王叔叔8:25从乙地骑摩托车出发去甲地,在差5分不到9点时,他遇到了第一辆汽车,9:16遇到第二辆汽车,王叔叔骑摩托车的速度是多少?
根据题意,汽车40分和摩托车30分共行74千米,汽车31分和摩托车51分共行74千米。
可以知道汽车40-31=9分钟相当于摩托车51-30=21分钟行的。
可以得到摩托车行完需要40÷9×21+30=370/3分钟。
所以摩托车小时行74÷370/3×60=36千米
230. 在底面边长为60厘米的正方形的一个长方体的容器里,直立着一个长1米,底面为正方形,边长15厘米的四棱柱铁棍.这时容器里的水半米深.现在把铁棍轻轻地向正上方提起24厘米,露出水面的四棱柱切棍浸湿部分长多少厘米?
减少24厘米的铁棍的体积,水面就要下降24×15×15÷(60×60)=1.5厘米。所以露在水面的有1.5+24=25.5厘米。
最新数学中的应用题 篇6
1. 一个四位数除以119余96,除以120余80.求这四位数.
解:用盈亏问题的思想来解答。
商是(96-80)÷(120-119)=16,所以被除数是120×16+80=20xx。
2. 有四个不同的自然数,其中任意两个数之和是2的倍数,任意三个数的和是3的倍数,求满足条件的最小的四个自然数.
解:任意两个数之和是2的倍数,说明这些数全部是偶数或者全部是奇数。 任意三个数的和是3的倍数,说明这些数除以3的余数相同。
要满足条件的最小自然数,因为0是自然数了。所以我认为结果是0、6、12、18。
3. 在一环形跑道上,甲从A点,乙从B点同时出发反向而行,6分钟后两人相遇,再过4分钟甲到达B点,又过8分钟两人再次相遇.甲、乙环行一周各需要多少分钟?
解:甲乙合行一圈需要8+4=12分钟。乙行6分钟的路程,甲只需4分钟。 所以乙行的12分钟,甲需要12÷6×4=8分钟,所以甲行一圈需要8+12=20分钟。乙行一圈需要20÷4×6=30分钟。
4. 甲、乙沿同一公路相向而行,甲的速度是乙的1.5倍.已知甲上午8点经过邮局,乙上午10点经过邮局,问甲、乙在中途何时相遇?
解:我们把乙行1小时的路程看作1份,
那么上午8时,甲乙相距10-8=2份。
所以相遇时,乙行了2÷(1+1.5)=0.8份,0.8×60=48分钟,
所以在8点48分相遇。
最新数学中的应用题 篇7
最新小升初数学应用题试卷精选
1. 一台拖拉机5小时耕地40公顷,照这样的速度,耕72公顷地需要几小时?
要求耕72公顷地需要几小时,我们就要先求出这台拖拉机每小时耕地多少公顷?
(1)每小时耕地多少公顷?
405=8(公顷)
(2)需要多少小时?
728=9(小时)
答:耕72公顷地需要9小时。
4. 小华每分拍球25次,小英每分比小华少拍5次。照这样计算,小英5分拍多少次?小华要拍同样多次要用几分?
(1)小英每分拍多少次?
25-5=20(次)
(2)小英5分拍多少次?
205=100(次)
(3)小华要几分拍100次?
10025=4(分)
答:小英5分拍100次,小华要拍同样多次要用4分。
5. 刘老师搬一批书,每次搬15本,搬了12次,正好搬完这批书的一半。剩下的.书每次搬20本,还要几次才能搬完?
(1)12次搬了多少本?
1512=180(本)
搬了的与没搬的正好相等
(2)要几次才能把剩下的搬完?
18020=9(次)
答:还要9次才能搬完。
三. 独立思考(答题时间:15分钟)
1. 在下图中,用16根等长的小棒,摆出5个正方形,移动其中3根,使它成为4个正方形。
2. 商店运来苹果和梨各一吨,5筐苹果的重量和4筐梨的重量相等。每筐苹果重20千克,商店运来苹果和梨各多少筐?每筐梨重多少千克?
2 纺织厂运来一堆煤,如果每天烧煤1500千克,6天可以烧完。如果每天烧1000千克,可以多烧几天?
要想求可以多烧几天,就要先知道这堆煤每天烧1000千克可以烧多少天;而要求每天烧1000千克,可以烧多少天,还要知道这堆煤一共有多少千克。
(1)这堆煤一共有多少千克?
15006=9000(千克)
(2)可以烧多少天?
90001000=9(天)
(3)可以多烧多少天?
9-6=3(天)
二. 合作交流
1. 把7本相同的书摞起来,高42毫米。如果把28本这样的书摞起来,高多少毫米?(用不同的方法解答)
方法1:
(1)每本书多少毫米?
427=6(毫米)
(2)28本书高多少毫米?
628=168(毫米)
方法2:
(1)28本书是7本书的多少倍?
287=4
(2)28本书高多少毫米?
424=168(毫米)
2. 两个车间装配电视机。第一车间每天装配35台,第二车间每天装配37台。照这样计算,这两个车间15天一共可以装配电视机多少台?
方法1:
(1)两个车间一天共装配多少台?
35+37=72(台)
(2)15天共可以装配多少台?
7215=1080(台)
方法2:
(1)第一车间15天装配多少台?
3515=525(台)
(2)第二车间15天装配多少台?
3715=555(台)
(3)两个车间一共可以装配多少台?
555+525=1080(台)
答:15天两个车间一共可以装配1080台。
3. 同学们到车站义务劳动,3个同学擦12块玻璃。(补充不同的条件求问题,编成两道不同的两步计算应用题)。
补充1:照这样计算,9个同学可以擦多少块玻璃?
(1)每个同学可以擦几块玻璃?
123=4(块)
(2)9个同学可以擦多少块?
49=36(块)
答:9个同学可以擦36块。
补充2:照这样计算,要擦40块玻璃,需要几个同学?
(1)每个同学可以擦几块玻璃?
123=4(块)
(2)擦40块需要几个同学?
最新数学中的应用题 篇8
小学数学除了简单的计算,到了小学高年级阶段,开始出现应用题。应用题是把含有数量关系的实际问题用文字叙述出来所形成的题目。下面是关于小学数学倍数的应用题,一起来练习吧!
【倍数问题】
一、求一个数的几倍就乘以几,要用乘法
1. 3的5倍是多少?
3x5=15 答:3的5倍是15。
2. 4的10倍是多少?
3. 7的9倍是多少?
二、求一个数是另一个数的几倍,用除法,用大数除以小的数
1. 45是9的多少倍?
2. 45÷9=5 答:45是9的5倍。
3. 35是5的多少倍?
4. 72是8的多少倍?
【应用问题】
(一)、求一个数的几倍是多少?
公式 :小数 × 倍 数 =大 数
相当于:平均数× 份 数 =总数
相当于:1倍数X倍 数 = 几倍的数
相当于:每份数X份数 = 总 数
1、小明今年9岁,爸爸的年龄是小玲的5倍,爸爸今年多少岁?
2、买一支笔2元钱,买60支这样的笔要多少钱?
能吃多少只害虫?
(二)、求一个数是另一个数的几倍?
公式: 大数 ÷ 小 数 = 倍数
相当于: 几倍的数 ÷ 1倍数= 倍数
相当于:总 数 ÷ 平均数 = 份 数
相当于:总数 ÷ 每份数 = 份 数
1、小明今年9岁,爸爸今年45。爸爸的年龄是小玲的几倍?
2、买一支笔2元钱,花120元可以买多少支这样的笔要多少钱?
3、三个同学做纸花。做了24朵红花,6朵黄花。红花是黄花的几倍?
班共有46名学生,每两人用一张课桌,一共需要多少张课桌?把这些课桌每4张摆一行,能摆多少行?还剩几张?
(三)、求一倍数?
公式:大 数 ÷ 倍数 = 小数
相当于: 几倍的数 ÷ 倍数= 1倍 数
相当于: 总 数 ÷ 份数= 平均数
相当于: 总 数 ÷ 份 数 = 每份数
1、爸爸今年45岁,是小玲年龄的5倍,小明今年多少岁?
2、一只东北虎的重量是360千克,大约是一只鸵鸟的`4倍,是一只企鹅的4倍,是一只企鹅的9倍。问鸵鸟多少千克?企鹅多少千克?
3、买一支笔2元钱,花120元可以买多少支这样的笔要多少钱?
4、饲养小组有母鸡12只,恰好是公鸡的3倍,公鸡有几只?
5、图书馆买来40本故事书,是科技书的5倍,科技书几本?
6、一只海狮重378千克,是一只企鹅体重的9倍。这只企鹅的体重是多少千克?
8、公园运来160盆花,准备摆在4个花坛里。平均每个花坛摆多少盆花?
9、一部儿童电视剧共336分钟。分8集播放,每集大约播放多长时间?
星光小学832名学生分4批去参观天文馆。平均每批有多少人?
奥林匹克火炬在某地传递4天传递了816千米。平均每天传递了多少千米?
有530把椅子,分5次运完。平均每次运多少把?如果分4次运呢?
丁小林家到学校有450米。他每天上学大约走8分钟,他每分钟大约走多少米?
三年级的225名学生要乘5辆车去春游。如果每辆车坐的人同样多,每辆车应该坐多少人?
(四)几倍多几?
公式:小数1×倍数+小数2=大数
1、文具店运来三箱红墨水,每箱100瓶。运来的兰墨水比红墨水多200瓶,运来兰墨水多少瓶?
2、一只猴子重25千克,一头熊猫的体重比猴子的6倍还多12千克一头熊猫的体重是多少?
(五)几倍少几 ?
公式:小数1×倍数-小数2=大数
1、王大伯前年养猪2头,去年养猪头数是前年的3倍,到年底卖了4头,还有几头?
2、一个牧民养了76只山羊,养的绵羊比山羊的4倍少16只。这个牧民养了多少只绵羊?
3、一户菜农去年收黄瓜520千克。收的西红柿是黄瓜的3倍,收的茄子比西红柿少260千克。收茄子多少千克?
【综合题】
1、三年级的学生去茶园里劳动。女生有56人,男生有64人。4名学生分成一组,一共可以分成多少组?
【倍数的综合——比较问题】
1、一个单位有620人到温泉山庄度假。1辆大客车能坐58人,11辆大客车能一次送走这些人吗?
2、小梦和小欣整理照片。一共有238张照片。每页可插6张要插多少页?如果一本相册有24页,1本相册能插得下这些照片吗?2本呢?
最新数学中的应用题 篇9
1、把一个体积为80立方厘米的铁块浸在底面积为20平方厘米的长方体容器中,水面高度为10厘米,如果把铁块捞出后,水面高多少?
2、要制作12节长方体的铁皮烟囱,每节长2米,宽4分米,高3分米,至少要用多少平方米的铁皮?
宽3米,铺设了2厘米厚的木地板,至少需要木材多少立方米?
宽1.8米,装的煤高0.6米,平均每立方米煤重1.5吨,这辆车装的煤有多少吨?
5、一种无盖的长方体形铁皮水桶,底面是边长4分米的正方形,高1米。做一只这样的水桶至少要多少铁皮?这只水桶能装水多少升?
宽7.5米的直跑道上。煤渣可以铺多厚?
宽14米,深1.2米。现在要在四壁和池底贴上面积为16平方分米的正方形瓷砖,需要多少块?
8、一个长方体的容器,底面积是16平方分米,装的水高6分米,现放入一个体积是24立方分米的铁块。这时的水面高多少?
9、一块长方形铁皮,长32厘米,在它四个顶角分别剪去边长4厘米的正方形,然后折起来焊成一个无盖的长方体铁皮盒。已知这个铁皮盒的容积是768立方厘米。原来这块铁皮的面积是多少?
一个长方体玻璃缸,底面积是200平方厘米,高8厘米,里面盛有4厘米深的水,现在将一块石头放入水中,水面升高2厘米。这块石头的体积是多少立方厘米?
一个长方体,长4米,宽3米,高2.4米,它的占地面积最大是多少平方米?表面积是多少平方米?体积是多少立方米?
有一块棱长是80厘米的正方体的铁块,现在要把它溶铸成一个横截面积是20平方厘米的长方体,这个长方体的长是多少厘米?
一块正方体的石头,棱长是5分米,每立方米的石头大约重2.7千克,这块石头重有多少千克?
【附】《体积与容积》教学设计
教材分析:
1、通过具体的`实验活动,了解体积和容积的实际意义,初步理解体积和容积的概念。
2、体积与容积的学习是在学生认识了长方体和正方体的特点以及长方体和正方体的表面积的基础上进行的。这一内容是进一步学习体积的计算方法等知识的基础,也是发展学生空间观念的重要载体。但体积和容积又是学生比较容易混淆的两个概念。
学情分析:
数学教学活动必须建立在学生的认知发展水平和已有的知识经验基础上。对于概念教学,比较抽象,难于理解。学生们有着丰富的生活经验,从他们身边的事物出发,把概念变得形象化、具体化,学生会更容易接受。本课的重点是初步理解体积和容积的概念。体积的概念是物体所占空间的大小。
教学目标:
知识与技能目标:通过具体的实验活动,了解体积和容积的实际意义,初步理解体积和容积的概念。
过程与方法目标:在操作、交流中,感受物体体积的大小、发展空间观念。
情感、态度和价值观目标:增强合作精神和喜爱数学的情感。
现代教学手段:使用多媒体课件,使抽象变直观,发挥现代教育手段的优势。
教学重点和难点
教学重点:通过具体的实验活动,初步理解体积和容积的概念。
教学难点:理解体积和容积的联系和区别。
教学过程:
(一)情境导入:
师:今天老师和同学们一起来探究《体积与容积》这一课。
师:同学们,你们知道乌鸦喝水的故事吗?为什么乌鸦最后能喝到水呢?谁能把这个故事讲给大家听?(生自由发言)
(1)认识体积
1、初步感受空间。
师:老师往水里放一个苹果,苹果占空间吗?放一枚硬币,硬币占空间吗?橡皮占空间吗?铅笔盒占空间吗?桌子呢?凳子呢?还有什么东西占空间?
师:是不是所有的东西都占空间?在水里占空间,拿出来呢?(也占空间)板书:空间。
2、空间也有大小。
师:橡皮与铅笔盒比谁占得空间大,谁占得空间小?桌子与凳子呢?板书:大小
3、体积的概念。
老师叫一位学生上台,问:“你有体积吗?老师有体积吗?谁的体积大?”请这位同学变换位置,站在教室的不同地方,问:“它的体积变了吗?他的什么变了?说明了什么?”(物体的位置变化了,但体积不变)
师:“橡皮泥是什么形状的?(长方体。)把橡皮泥捏成球体,同时问:“它这时是什么形状?(球体)它的体积变了吗?他的什么变了?(形状)说明了什么?(物体的形状变化了,但体积不变。)生活中你见到过这样的事情吗?(生:妈妈把一团面擀成一个薄饼。生:奶奶把一个黄瓜切成了一片片的。)
(2)认识容积
1、出示:饮料瓶,水杯,茶叶罐。
师:请迅速给这三个物体按体积由大到小的顺序排一排。
2、认识容器。
师:他们是用来干什么的?(学生
最新数学中的应用题 篇10
1、甲、乙两车都从A地出发经过B地驶往C地,A,B两地的距离等于B,C两地的距离.乙车的速度是甲车速度的80%.已知乙车比甲车早出发11分钟,但在B地停留了7分钟,甲车则不停地驶往C地.最后乙车比甲车迟4分钟到C地.那么乙车出发后几分钟时,甲车就超过乙车.
2、乙、丙三人在A、B两块地植树,A地要植900棵,B地要植1250棵.已知甲、乙、丙每天分别能植树24,30,32棵,甲在A地植树,丙在B地植树,乙先在A地植树,然后转到B地植树.两块地同时开始同时结束,乙应在开始后第几天从A地转到B地?
3、一辆大轿车与一辆小轿车都从甲地驶往乙地.大轿车的速度是小轿车速度的80%.已知大轿车比小轿车早出发17分钟,但在两地中点停了5分钟,才继续驶往乙地;而小轿车出发后中途没有停,直接驶往乙地,最后小轿车比大轿车早4分钟到达乙地.又知大轿车是上午10时从甲地出发的.那么小轿车是在上午什么时候追上大轿车的.
4、小明早上从家步行去学校,走完一半路程时,爸爸发现小明的数学书丢在家里,随即骑车去给小明送书,追上时,小明还有3/10的路程未走完,小明随即上了爸爸的车,由爸爸送往学校,这样小明比独自步行提早5分钟到校.小明从家到学校全部步行需要多少时间?
5、一个圆柱形容器内放有一个长方形铁块.现打开水龙头往容器中灌水.3分钟时水面恰好没过长方体的顶面.再过18分钟水已灌满容器.已知容器的高为50厘米,长方体的高为20厘米,求长方体的底面面积和容器底面面积之比.
6、有三块草地,面积分别是5,15,24亩.草地上的草一样厚,而且长得一样快.第一块草地可供10头牛吃30天,第二块草地可供28头牛吃45天,问第三块地可供多少头牛吃80天?
7、有甲、乙两根水管,分别同时给A,B两个大小相同的水池注水,在相同的时间里甲、乙两管注水量之比是7:5.经过2+1/3小时,A,B两池中注入的 水之和恰好是一池.这时,甲管注水速度提高25%,乙管的注水速度不变,那么,当甲管注满A池时,乙管再经过多少小时注满B池?
8、甲、乙两辆清洁车执行东、西城间的公路清扫任务.甲车单独清扫需要10小时,乙车单独清扫需要15小时,两车同时从东、西城相向开出,相遇时甲车比乙车多清扫12千米,问东、西两城相距多少千米?
9、某工程,由甲、乙两队承包,2.4天可以完成,需支付1800元;由乙、丙两队承包,3+3/4天可以完成,需支付1500元;由甲、丙两队承包,2+6/7天可以完成,需支付1600元.在保证一星期内完成的前提下,选择哪个队单独承包费用最少?
10、甲数除以乙数,乙数除以丙数,商相等,余数都是2,甲、乙两数之和是478.那么甲、乙丙三数之和是几?
最新数学中的应用题 篇11
133.在一环形跑道上,甲从A点,乙从B点同时出发反向而行,6分钟后两人相遇,再过4分钟甲到达B点,又过8分钟两人再次相遇.甲、乙环行一周各需要多少分钟?
解:甲乙合行一圈需要8+4=12分钟。乙行6分钟的路程,甲只需4分钟。
所以乙行的12分钟,甲需要12÷6×4=8分钟,所以甲行一圈需要8+12=20分钟。乙行一圈需要20÷4×6=30分钟。
134.甲、乙沿同一公路相向而行,甲的速度是乙的1.5倍.已知甲上午8点经过邮局,乙上午10点经过邮局,问甲、乙在中途何时相遇?
解:我们把乙行1小时的路程看作1份,
那么上午8时,甲乙相距10-8=2份。
所以相遇时,乙行了2÷(1+1.5)=0.8份,0.8×60=48分钟,
所以在8点48分相遇。
135.甲、乙两人同时从山脚开始爬山,到达山顶后就立即下山.他们两人下山的速度都是各自上山速度的2倍.甲到山顶时,乙距山顶还有400米,甲回到山脚时,乙刚好下到半山腰.求从山顶到山脚的距离.
解:假设甲乙可以继续上行,那么甲乙的速度比是(1+1÷2):(1+1/2÷2)=6:5
所以当甲行到山顶时,乙就行了5/6,所以从山顶到山脚的距离是400÷(1-5/6)=2400米。
136.一辆公共汽车载了一些乘客从起点出发,在第一站下车的乘客是车上总数(含一名司机和两名售票员)的1/7,第二站下车的乘客是车上总人数的1/6,.......第六站下车的乘客是车上总人数的1/2,再开车是车上就剩下1名乘客了.已知途中没有人上车,问从起点出发时,车上有多少名乘客?
解:最后剩下1+1+2=4人。那么车上总人数是
4÷(1-1/2)÷(1-1/3)÷……÷(1-1/6)÷(1-1/7)=28人
那么,起点时车上乘客有28-3=25人。
137.有三块草地,面积分别是4亩、8亩、10亩.草地上的草一样厚,而且长得一样快,第一块草地可供24头牛吃6周,第二块草地可供36头牛吃12周.问第三块草地可供50头牛吃几周?
解法一:设每头牛每周吃1份草。
第一块草地4亩可供24头牛吃6周,
说明每亩可供24÷4=6头牛吃6周。
第二块草地8亩可共36头牛吃12周,
说明每亩草地可供36÷8=9/2头牛吃12周。
所以,每亩草地每周要长(9/2×12-6×6)÷(12-6)=3份
所以,每亩原有草6×6-6×3=18份。
因此,第三块草地原有草18×10=180份,每周长3×10=30份。
所以,第三块草地可供50头牛吃180÷(50-30)=9周
解法二:设每头牛每周吃1份草。我们把题目进行变形。
有一块1亩的草地,可供24÷4=6头牛吃6周,供36÷8=9/2头牛吃12周,那么可供50÷10=5头牛吃多少周呢?
所以,每周草会长(9/2×12-6×6)÷(12-6)=3份,
原有草(6-3)×6=18份,
那么就够5头牛吃18÷(5-3)=9周
138.B地在A,C两地之间.甲从B地到A地去,出发后1小时,乙从B地出发到C地,乙出发后1小时,丙突然想起要通知甲、乙一件重要的事情,于是从B地出发骑车去追赶甲和乙.已知甲和乙的速度相等,丙的速度是甲、乙速度的3倍,为使丙从B地出发到最终赶回B地所用的时间最少,丙应当先追甲再返回追乙,还是先追乙再返回追甲?
我的思考如下:
如果先追乙返回,时间是1÷(3-1)×2=1小时,
再追甲后返回,时间是3÷(3-1)×2=3小时,
共用去3+1=4小时
如果先追甲返回,时间是2÷(3-1)×2=2小时,
再追乙后返回,时间是3÷(3-1)×2=3小时,
共用去2+3=5小时
所以先追乙时间最少。故先追更后出发的。
最新数学中的应用题 篇12
1、一根圆柱形的木料长2米,截成相等的3段,表面积增加24平方厘米,原来的木料的体积是多少立方厘米?
2、一个圆锥形麦堆的底面周长12.56 米,高1.2 米,如果每立方米小麦重500千克。这堆小麦重多少吨?
3、一个长方形的长8厘米,宽4.56厘米,与这个长方形周长相等的圆的面积是多少?
4、小升初数学知识点复习:应用题练习题:一块三角形地的面积是0.8公顷,它的底是400米,它的.高是多少米?
5、一块白布是边长2米的正方形,剪成直角边是2分米的等腰直角三角形小三角巾,最多可以剪多少块?
6、用12.56分米长的铅丝分别围成一个正方形和圆,圆的面积比正方形面积多多少?
7、小红看一本故事书,3天看了54页,照这样计算,要看完162页的这本书,还需几天?(用比例解)
8、有一个等腰三角形,它的两个角的度数比是1:2,这个三角形按角分类可能是什么三角形?
9、织布厂加工完成一批布,甲乙合作16天完成,甲单独做20天完成,乙每天织600米,这批布共多少千米。
10、甲乙从同一地点向相反的方向行驶,甲下午6时出发每小时行40000米,乙第二天上午4时出发,经过10小时后两车相距1080千米。乙车的时速是多少千米?
11、机床厂制造某种机床,每台用钢材1.5吨,实际每台节约0.25吨。结果比原计划多制造10台。原计划造机床多少台?
12、小王按批发价买进一批牙刷,每枝0.35元,零售价每枝0.40元,当还剩下200枝没卖时,小王计算扣除所有成本已获利200元。商店买来牙刷多少枝?
13、盐完全溶解在水中变成盐水,已知某种盐水中盐和水的重量比是1:10。 500克盐要加水多少千克?
14、修一条公路,前5天修了它的20%,照这样计算,修完这条路一共要多少天?
15、一台洗衣机原价1450元,现降价20%出售,但售价仍比成本高1/9。这台洗衣机成本多少元?
16、要修建一条新路,实际投资了158.8万元,比原计划节约了21.2万元。节约了百分之几?
17、单独完成一项工程,甲队要10小时,乙队要15小时。现在甲队先独做2小时,余下的乙队在参加工作,还需要多少小时完成任务?
18、小林早晨7:30从家去学校,每分钟走50米。刚到学校门口发现数学书没有带,立即沿原路返回,每分钟走70米。到家正好是7:54。小林家离学校多少米?
19、一个长方体仓库从里面量约长9米。宽6米,高5米。如果放入棱长为2米的正方体木箱,至多可以放进多少只?
20、某厂会计发现现金多了273.6元,经查帐发现原来是有一笔支出款的小数点点错了一位。问这笔款是多少元?
最简单的数学应用题10篇
最简单的数学应用题 篇1
1、把一个体积为80立方厘米的铁块浸在底面积为20平方厘米的长方体容器中,水面高度为10厘米,如果把铁块捞出后,水面高多少?
2、要制作12节长方体的铁皮烟囱,每节长2米,宽4分米,高3分米,至少要用多少平方米的铁皮?
宽3米,铺设了2厘米厚的木地板,至少需要木材多少立方米?
宽1.8米,装的煤高0.6米,平均每立方米煤重1.5吨,这辆车装的煤有多少吨?
5、一种无盖的长方体形铁皮水桶,底面是边长4分米的正方形,高1米。做一只这样的水桶至少要多少铁皮?这只水桶能装水多少升?
宽7.5米的直跑道上。煤渣可以铺多厚?
宽14米,深1.2米。现在要在四壁和池底贴上面积为16平方分米的正方形瓷砖,需要多少块?
8、一个长方体的容器,底面积是16平方分米,装的水高6分米,现放入一个体积是24立方分米的铁块。这时的水面高多少?
9、一块长方形铁皮,长32厘米,在它四个顶角分别剪去边长4厘米的正方形,然后折起来焊成一个无盖的长方体铁皮盒。已知这个铁皮盒的容积是768立方厘米。原来这块铁皮的面积是多少?
一个长方体玻璃缸,底面积是200平方厘米,高8厘米,里面盛有4厘米深的水,现在将一块石头放入水中,水面升高2厘米。这块石头的体积是多少立方厘米?
一个长方体,长4米,宽3米,高2.4米,它的占地面积最大是多少平方米?表面积是多少平方米?体积是多少立方米?
有一块棱长是80厘米的正方体的铁块,现在要把它溶铸成一个横截面积是20平方厘米的长方体,这个长方体的长是多少厘米?
一块正方体的石头,棱长是5分米,每立方米的石头大约重2.7千克,这块石头重有多少千克?
【附】《体积与容积》教学设计
教材分析:
1、通过具体的`实验活动,了解体积和容积的实际意义,初步理解体积和容积的概念。
2、体积与容积的学习是在学生认识了长方体和正方体的特点以及长方体和正方体的表面积的基础上进行的。这一内容是进一步学习体积的计算方法等知识的基础,也是发展学生空间观念的重要载体。但体积和容积又是学生比较容易混淆的两个概念。
学情分析:
数学教学活动必须建立在学生的认知发展水平和已有的知识经验基础上。对于概念教学,比较抽象,难于理解。学生们有着丰富的生活经验,从他们身边的事物出发,把概念变得形象化、具体化,学生会更容易接受。本课的重点是初步理解体积和容积的概念。体积的概念是物体所占空间的大小。
教学目标:
知识与技能目标:通过具体的实验活动,了解体积和容积的实际意义,初步理解体积和容积的概念。
过程与方法目标:在操作、交流中,感受物体体积的大小、发展空间观念。
情感、态度和价值观目标:增强合作精神和喜爱数学的情感。
现代教学手段:使用多媒体课件,使抽象变直观,发挥现代教育手段的优势。
教学重点和难点
教学重点:通过具体的实验活动,初步理解体积和容积的概念。
教学难点:理解体积和容积的联系和区别。
教学过程:
(一)情境导入:
师:今天老师和同学们一起来探究《体积与容积》这一课。
师:同学们,你们知道乌鸦喝水的故事吗?为什么乌鸦最后能喝到水呢?谁能把这个故事讲给大家听?(生自由发言)
(1)认识体积
1、初步感受空间。
师:老师往水里放一个苹果,苹果占空间吗?放一枚硬币,硬币占空间吗?橡皮占空间吗?铅笔盒占空间吗?桌子呢?凳子呢?还有什么东西占空间?
师:是不是所有的东西都占空间?在水里占空间,拿出来呢?(也占空间)板书:空间。
2、空间也有大小。
师:橡皮与铅笔盒比谁占得空间大,谁占得空间小?桌子与凳子呢?板书:大小
3、体积的概念。
老师叫一位学生上台,问:“你有体积吗?老师有体积吗?谁的体积大?”请这位同学变换位置,站在教室的不同地方,问:“它的体积变了吗?他的什么变了?说明了什么?”(物体的位置变化了,但体积不变)
师:“橡皮泥是什么形状的?(长方体。)把橡皮泥捏成球体,同时问:“它这时是什么形状?(球体)它的体积变了吗?他的什么变了?(形状)说明了什么?(物体的形状变化了,但体积不变。)生活中你见到过这样的事情吗?(生:妈妈把一团面擀成一个薄饼。生:奶奶把一个黄瓜切成了一片片的。)
(2)认识容积
1、出示:饮料瓶,水杯,茶叶罐。
师:请迅速给这三个物体按体积由大到小的顺序排一排。
2、认识容器。
师:他们是用来干什么的?(学生
最简单的数学应用题 篇2
1、李老师带有60元钱,正好买一个足球和两个排球。如果只买两个排球,还剩28元。一个足球多少钱?一个排球多少钱?
2、14个同学站成一队做操,从前面数张兵是第6个,从后数他是第几个?
3、有两篮苹果,第一篮25个,第二篮19个,从第一篮中拿几个放入第二篮,两篮的苹果数相等?
4、小花今年6岁,爸爸对小花说:"你长到10岁的时候,我正好40岁。"爸爸今年多少岁?
5、一辆公共汽从东站开到西站,开一趟。如果这辆车从东站出发,开了11趟之后,这辆车在东站还是西站?
6、王老师领男女学生个10名去看电影,要买几张电影票。
7、12辆摩托车组成一列向前开,从前往后数,银色摩托车是第8辆,问:从后往前数,它是第几辆?
8、小文今年10岁,比妈妈小29岁。去年他比妈妈小几岁?
9、妈妈买回一些鸭蛋和12个鸡蛋,吃了8个鸡蛋后,剩下的鸡蛋和鸭蛋同样多,问妈妈买回的鸭蛋是几个?
10、一只猫吃一只老鼠用5分钟吃完,5只猫同时吃5只同样大小的老鼠,需要几分钟才能吃完?
最简单的数学应用题 篇3
1. 有若干个自然数,它们的算术平均数是10,如果从这些数中去掉最大的一个,则余下的算术平均数为9;如果去掉最小的一个,则余下的算术平均数为11,这些数最多有多少个?这些数中最大的数最大值是几?
解:根据新课标教材,0是最小的自然数。
由于去掉最小数后,算术平均数是11,
所以,这些数最多有10÷(11-10)+1=11个。
所以,最大的数最大值是11-1+10=20
2. 某班有少先队员35人,这个班有男生23人,这个班女生少先队员比男生非少先队员多几人?
解:
方法一
如果这23个男生都是少先队员,那么女生少先队员就有35-23=12人,男生非少先队员就没有了,所以就多12人。
方法二
如果这23个男生都不是少先队员,那么女生少先队员就有35人,那么女生少先队员就比男生非少先队员多35-23=12人。
方法三
女生少先队员-男生非少先队员
=(女生少先队员+男生少先队员)-(男生非少先队员+男生少先队员)
=少先队员-男生
=35-23
=12人。
3. 小东计划到周口店参观猿人遗址.如果他坐汽车以40千米/小时的速度行驶,那么比骑车去早到3小时,如果他以8千米/小时的速度步行去,那么比骑车晚到5小时,小东的出发点到周口店有多少千米?
解:
说明坐汽车比步行少用3+5=8小时,
这8小时内,步行要行8×8=64千米。
坐汽车每小时要比步行多行40-8=32千米。
坐汽车64÷32=2小时,就可以多行这么多了。
所以,从出发点到周口店有40×2=80千米。
又想到一个解法:
汽车速度是步行速度的40÷8=5倍
那么汽车行完全程的时间是(3+5)÷(5-1)=2小时
所以从出发点到周口店有40×2=80千米
所以从出发点到周口店有40×2=80千米
40/8=5 (5+3)*40=320 320/(5-1)=80
4. 甲、乙两船在相距90千米的河上航行,如果相向而行,3小时相遇,如果同向而行则15小时甲船追上乙船.求在静水中甲、乙两船的速度.
两船速度和:90÷3=30(千米)
两船速度差:90÷15=6(千米)
乙船的速度:(30-6)÷2=12(千米/小时)
甲船的速度:12+6==18(千米/小时)
答:甲船的速度是18千米/小时,乙船的速度是12千米/小时.
5. 二年级两个班共有学生90人,其中少先队员有71人,一班少先队员占本班人数的75%,二班少先队员占本班人数的5/6.一班少先队员人数比二班少先队员人数多几人?
解:一班人数:(5/6x90-71)/(5/6-75%)=48(人)
一班少先队员人数比二班少先队员多的人数:75%x48-5/6x(90-48)=1(人)
解:
假设两个班的少先队员都占本班人数的5/6,
那么少先队员人数就占两班总人数的5/6,即90×5/6=75人。
比实际多了75-71=4人。
所以一班有少先队员4÷(5/6-75%)=48人,二班有90-48=42人。
那么一班比二班多48×75%-42×5/6=1人
6. 一个容器中已注满水,有大、中、小三个球.第一次把小球沉入水中,第二次把小球取出,把中球沉入水中,第三次把中球取出,把小球和大球一起沉入水中,现知道每次从容器中溢出水量的情况是:第一次是第二次的1/2,第三次是第二次的1.5倍.求三个球的体积之比.
解:
第一次溢出的水是小球的体积,假设为1
第二次溢出的水是中球的体积-小球的体积
第三次溢出的水是大球的体积+小球的体积-中球的体积
第一次是第二次的1/2,所以中球的体积为1+2=3
第三次是第二次的1.5倍,第二次是2;所以大球的体积为3-1+3=5
V小球:V中球:V大球=1:3:5
7. 某人翻越一座山用了2小时,返回用了2.5小时,他上山的速度是3000米/小时,下山的速度是4500米/小时.问翻越这座山要走多少米?
解:
往返共用去2+2.5=4.5小时。
所有上坡用的时间和所有下坡用的时间比是4500:3000=3:2。
所有上坡用的时间是4.5÷(3+2)×3=2.7小时,
所以翻越这座山要走的路程就相当于所有的山坡路,即3000×2.7=8100米
解:上山的速度是3000米/小时,所以走每一米需要时间1/3000小时
下山的速度是4500米/小时,所以走每一米需要时间1/4500小时
上山走的总路程=下山走的总路程=全程
相当于用3000米/小时和4500米/小时的速度和(2+2.5)小时走了 2个全程(一个全程上山和一个全程下山)
(2+2.5)÷(1/3000+1/4500)=8100米
8. 钢筋原材料每根长7.3米,每套钢筋架子用长2.4米、2.1米和1.5米的钢筋各一段.现需要绑好钢筋架子100套,至少要用去原材料多少根?
解:
2.1×2+1.5×2=7.2米,用100÷2=50根原材料。
2.4×3=7.2米,用100÷3=33根……1段原材料。
最后的这一段也要用1根原材料。
所以共用去50+33+1=84根原材料。
9. 有一块铜锌合金,其中铜和锌的比2:3.现知道再加入6克锌,熔化后共得新合金36克,新合金中铜和锌的比是多少?
解法一:
加入的6克锌相当于新合金的6÷36=1/6。
原来的合金是新合金是1-1/6=5/6。
铜没有变,占新合金的5/6÷(2+3)×2=1/3,
新合金中的锌占1-1/3=2/3。
所以新合金中的铜和锌的比是1/3:2/3=1:2
解法二:
原来的合金重36-6=30(克)
原来的合金每份重30÷(2+3)=6(克)
含铜6×2=12(克) ,含锌6×3=18(克)
新合金中的合金比12÷(18+6)=1/2,即铜:锌=1:2
10. 小明通常总是步行上学,有一天他想锻炼身体,前1/3路程快跑,速度是步行速度的4倍,后一段的路程慢跑,速度是步行速度的2倍.这样小明比平时早35分到校,小明步行上学需要多少分钟?
解:
行1/3的路程,速度是步行的4倍,
说明用的时间是原来总时间的1/3÷4=1/12。
行余下的1-1/3=2/3的路程,速度是步行的2倍,
说明用的时间是原来总时间的2/3÷2=1/3。
所以这35分钟相当于平时总时间的1-1/3-1/12=7/12
所以小明步行上学需要35÷7/12=60分钟。
解:
35÷(4+2+1)=5(分钟)
5×4÷3/1=60(分钟)
答:小明步行上学需要60分钟.
最简单的数学应用题 篇4
最新小升初数学应用题试卷精选
1. 一台拖拉机5小时耕地40公顷,照这样的速度,耕72公顷地需要几小时?
要求耕72公顷地需要几小时,我们就要先求出这台拖拉机每小时耕地多少公顷?
(1)每小时耕地多少公顷?
405=8(公顷)
(2)需要多少小时?
728=9(小时)
答:耕72公顷地需要9小时。
4. 小华每分拍球25次,小英每分比小华少拍5次。照这样计算,小英5分拍多少次?小华要拍同样多次要用几分?
(1)小英每分拍多少次?
25-5=20(次)
(2)小英5分拍多少次?
205=100(次)
(3)小华要几分拍100次?
10025=4(分)
答:小英5分拍100次,小华要拍同样多次要用4分。
5. 刘老师搬一批书,每次搬15本,搬了12次,正好搬完这批书的一半。剩下的.书每次搬20本,还要几次才能搬完?
(1)12次搬了多少本?
1512=180(本)
搬了的与没搬的正好相等
(2)要几次才能把剩下的搬完?
18020=9(次)
答:还要9次才能搬完。
三. 独立思考(答题时间:15分钟)
1. 在下图中,用16根等长的小棒,摆出5个正方形,移动其中3根,使它成为4个正方形。
2. 商店运来苹果和梨各一吨,5筐苹果的重量和4筐梨的重量相等。每筐苹果重20千克,商店运来苹果和梨各多少筐?每筐梨重多少千克?
2 纺织厂运来一堆煤,如果每天烧煤1500千克,6天可以烧完。如果每天烧1000千克,可以多烧几天?
要想求可以多烧几天,就要先知道这堆煤每天烧1000千克可以烧多少天;而要求每天烧1000千克,可以烧多少天,还要知道这堆煤一共有多少千克。
(1)这堆煤一共有多少千克?
15006=9000(千克)
(2)可以烧多少天?
90001000=9(天)
(3)可以多烧多少天?
9-6=3(天)
二. 合作交流
1. 把7本相同的书摞起来,高42毫米。如果把28本这样的书摞起来,高多少毫米?(用不同的方法解答)
方法1:
(1)每本书多少毫米?
427=6(毫米)
(2)28本书高多少毫米?
628=168(毫米)
方法2:
(1)28本书是7本书的多少倍?
287=4
(2)28本书高多少毫米?
424=168(毫米)
2. 两个车间装配电视机。第一车间每天装配35台,第二车间每天装配37台。照这样计算,这两个车间15天一共可以装配电视机多少台?
方法1:
(1)两个车间一天共装配多少台?
35+37=72(台)
(2)15天共可以装配多少台?
7215=1080(台)
方法2:
(1)第一车间15天装配多少台?
3515=525(台)
(2)第二车间15天装配多少台?
3715=555(台)
(3)两个车间一共可以装配多少台?
555+525=1080(台)
答:15天两个车间一共可以装配1080台。
3. 同学们到车站义务劳动,3个同学擦12块玻璃。(补充不同的条件求问题,编成两道不同的两步计算应用题)。
补充1:照这样计算,9个同学可以擦多少块玻璃?
(1)每个同学可以擦几块玻璃?
123=4(块)
(2)9个同学可以擦多少块?
49=36(块)
答:9个同学可以擦36块。
补充2:照这样计算,要擦40块玻璃,需要几个同学?
(1)每个同学可以擦几块玻璃?
123=4(块)
(2)擦40块需要几个同学?
最简单的数学应用题 篇5
对于备战小升初的同学来说,复习的好坏对小升初考试成绩的高低起着很大的影响。为此数学网小升初频道为大家提供小升初数学应用题:订购商品,希望能够真正的帮助到家长和小学生们!
张先生向商店订购某种商品80件,每件定价100元.张先生向商店经理说:“如果你肯减价,每减价1元,我就多订购4件.”商品店经理算了一下,如果减价5%,由于张先生多订购,仍可获得与原来一样多的利润.问这种商品的成本是多少元?
解法一:减价100×5%=5元,多订购5×4=20件,共订购80+20=100件。
由于利润一样,所以存在:利润×80=(利润-5)×100,可以得出利润是25元。
所以成本是100-25=75元。
解法二:减价100×5%=5元,多订购5×4=20件,如果按照原价销售,就会多获得20÷80=1/4的利润。那么减价的.5元,相当于原来利润的1-1÷(1+1/4)=1/5。那么原来的利润是5÷1/5=25元。因此成本是100-25=75元。
减价5%就是减价了:100×5%=5元
所以多订了:4×5=20件
共订购:80+20=100件
现在的售价是:(100-5)×100=9500元----------100件的成本和利润
原来的售价是:80×100=8000元--------------80件的成本和利润
因为利润一样,所以9500-8000=1500元是100-80=20件的成本
最简单的数学应用题 篇6
1.小熊捡了9个玉米,小猴捡的是小熊的4倍,他们一共捡了多少个玉米?
2. 食品店有85听可乐,上午卖了46听,下午卖了30听,还剩多少听?
3. 操场上原有16个同学,又来了14个。这些同学每5个一组做游戏,可以分成多少组?
4、超市里买4袋饼干要付8元,买8袋饼干要付多少元?
5、老师有8袋乒乓球,每袋6个,借给同学15个,还剩多少个?
6. 一小桶牛奶5元钱,一大桶牛奶是一小桶的4倍,买一大一小两桶牛奶共需要多少钱?
7、三个小队一共捉了42条虫子,第一队捉了18条,第二队捉了16条。第三小队捉了多少条虫子?
8. 王老师在文具店买了5张绿卡纸,15张红卡纸。红卡纸是绿卡纸的多少倍?
9. 二年级一班有20名男生,22名女生,平均分成6个小组,每组有几名同学?
10、一辆空调车上有42人,中途下车8人,又上来16人,现在车上有多少人?
11、红领巾养鸡场有公鸡44只,母鸡比公鸡多16只。母鸡有多少只?
12、红领巾养鸡场有母鸡60只,母鸡比公鸡多14只,公鸡有多少只?
13、小白兔有72只,小狗有9只,小白兔的只数是小狗的几倍?
14、56个桃子平均分给7只小猴,每只小猴分几个?
15、商店有自行车60辆,卖了4天,每天卖8辆,还剩多少辆?
16、 有25个苹果,梨比苹果少7个,有多少个梨?
17、花丛中有蜻蜓和蝴蝶共35只,飞走了6只,又飞来了12只。现在花丛中蜻蜓和蝴蝶有多少只?
18、停车场有卡车35辆,有轿车24辆。开走了17辆,现在有多少辆车?
19、小明做了18面绿旗,又做了32面红旗。送给幼儿园14面,小明现在还有多少面?
20、面包师傅做了54个面包,小明买走了19个,小红买走了25。你还可以买几个?
参考答案
1. 45
2. 9
3. 6
4. 16
5. 33
6. 25
7. 8
8. 3
9. 7
10. 50
11. 60
12. 46
13. 8
14. 8
15. 28
16. 18
17. 41
18. 42
19. 36
20. 10
最简单的数学应用题 篇7
133.在一环形跑道上,甲从A点,乙从B点同时出发反向而行,6分钟后两人相遇,再过4分钟甲到达B点,又过8分钟两人再次相遇.甲、乙环行一周各需要多少分钟?
解:甲乙合行一圈需要8+4=12分钟。乙行6分钟的路程,甲只需4分钟。
所以乙行的12分钟,甲需要12÷6×4=8分钟,所以甲行一圈需要8+12=20分钟。乙行一圈需要20÷4×6=30分钟。
134.甲、乙沿同一公路相向而行,甲的速度是乙的1.5倍.已知甲上午8点经过邮局,乙上午10点经过邮局,问甲、乙在中途何时相遇?
解:我们把乙行1小时的路程看作1份,
那么上午8时,甲乙相距10-8=2份。
所以相遇时,乙行了2÷(1+1.5)=0.8份,0.8×60=48分钟,
所以在8点48分相遇。
135.甲、乙两人同时从山脚开始爬山,到达山顶后就立即下山.他们两人下山的速度都是各自上山速度的2倍.甲到山顶时,乙距山顶还有400米,甲回到山脚时,乙刚好下到半山腰.求从山顶到山脚的距离.
解:假设甲乙可以继续上行,那么甲乙的速度比是(1+1÷2):(1+1/2÷2)=6:5
所以当甲行到山顶时,乙就行了5/6,所以从山顶到山脚的距离是400÷(1-5/6)=2400米。
136.一辆公共汽车载了一些乘客从起点出发,在第一站下车的乘客是车上总数(含一名司机和两名售票员)的1/7,第二站下车的乘客是车上总人数的1/6,.......第六站下车的乘客是车上总人数的1/2,再开车是车上就剩下1名乘客了.已知途中没有人上车,问从起点出发时,车上有多少名乘客?
解:最后剩下1+1+2=4人。那么车上总人数是
4÷(1-1/2)÷(1-1/3)÷……÷(1-1/6)÷(1-1/7)=28人
那么,起点时车上乘客有28-3=25人。
137.有三块草地,面积分别是4亩、8亩、10亩.草地上的草一样厚,而且长得一样快,第一块草地可供24头牛吃6周,第二块草地可供36头牛吃12周.问第三块草地可供50头牛吃几周?
解法一:设每头牛每周吃1份草。
第一块草地4亩可供24头牛吃6周,
说明每亩可供24÷4=6头牛吃6周。
第二块草地8亩可共36头牛吃12周,
说明每亩草地可供36÷8=9/2头牛吃12周。
所以,每亩草地每周要长(9/2×12-6×6)÷(12-6)=3份
所以,每亩原有草6×6-6×3=18份。
因此,第三块草地原有草18×10=180份,每周长3×10=30份。
所以,第三块草地可供50头牛吃180÷(50-30)=9周
解法二:设每头牛每周吃1份草。我们把题目进行变形。
有一块1亩的草地,可供24÷4=6头牛吃6周,供36÷8=9/2头牛吃12周,那么可供50÷10=5头牛吃多少周呢?
所以,每周草会长(9/2×12-6×6)÷(12-6)=3份,
原有草(6-3)×6=18份,
那么就够5头牛吃18÷(5-3)=9周
138.B地在A,C两地之间.甲从B地到A地去,出发后1小时,乙从B地出发到C地,乙出发后1小时,丙突然想起要通知甲、乙一件重要的事情,于是从B地出发骑车去追赶甲和乙.已知甲和乙的速度相等,丙的速度是甲、乙速度的3倍,为使丙从B地出发到最终赶回B地所用的时间最少,丙应当先追甲再返回追乙,还是先追乙再返回追甲?
我的思考如下:
如果先追乙返回,时间是1÷(3-1)×2=1小时,
再追甲后返回,时间是3÷(3-1)×2=3小时,
共用去3+1=4小时
如果先追甲返回,时间是2÷(3-1)×2=2小时,
再追乙后返回,时间是3÷(3-1)×2=3小时,
共用去2+3=5小时
所以先追乙时间最少。故先追更后出发的。
最简单的数学应用题 篇8
1、李红早晨7点从家出发去学校,她走了2分钟后发现忘带语文书了,她立刻回家拿了书又立即往学校赶,这样她到校时是7点20分。如果她每分钟走80米,李红家离学校有多远?
2、一辆货车从甲城往乙城运货,每小时行42千米,预计6小时到达。但行到一半时,由于机器出了故障,用了1小时进行修理,如果仍要求在预计时间到达乙地,余下的路程必须每小时行多少千米?
3、一辆卡车上午10时从南京出发开往浙江,原计划每小时行驶60千米,下午1时到达,但实际晚点2小时。这辆汽车实际每小时行驶多少千米?
4、明明家离学校有200米,他走了4分钟,如果用同样的速度,从学校到少年宫明明走了12分钟。学校到少年宫有多少米?
5、小李骑摩托车以每分钟650米的速度从甲村到乙村去办事,他骑出5分钟后,因忘记带东西立即返回去拿,然后又立即出发去乙村,这样他一共用了25分钟才到达乙村。两个村相距有多少米?
6、一列火车早上5时从甲地开往乙地,下午1时可以到达。开汽车从甲地到乙地要多用2小时,如果汽车每小时行52千米,甲乙两地相距多少千米?
7、张青平时都用每分钟66米的速度从家出发去上学,这样他10分钟就能到学校。有一天他走到一半时,遇到一个熟人讲了2分钟话,如果他仍要按时到校,余下的路程每分钟要走多少米?
8、小明和小红的家在同一条大街的两头。如果小明每分钟走40米,小红每分钟走30米,他们两人约好同时出发,相向而行,经过3分钟两人相遇。他们两家相距多远?
9、一列客车和一列火车分别从两座城市同时出发,相向而行,客车每小时行45千米,火车每小时行35千米,经过8小时,两车在途中相遇。求:两座城市相距多远?
10、一架飞机以每小时420千米的速度从A城出发,飞向B城。一小时后,另一架飞机以每小时小时460千米的速度从B城飞往A城,经过3小时遇到从A城飞来的飞机。AB两城相距多少千米?
11、小红和小明从相距1500米的两地同时出发,相向而行,小红每分钟走55米,小明每分钟比小红多行15米。经过10分钟后,两人相遇了吗?
12、敌舰在我军舰前面以每分钟120米的速度逃跑,我军舰以每分钟180米的速度在后面追,20分钟后追上敌舰。问:一开始敌舰在我军舰前多少米?
13、敌舰在我军舰前1500米处逃跑,我军舰在后面追。敌舰每分钟行150米,我军舰每分钟行180米,多少分钟才能追上?
14、小丽和小张都从东村往西村走,小丽用每分钟120米的速度先走了5分钟后,小张才用每分钟150的速度出发,结果两人同时到达。东西两村相距多远?
15、小红和小明都从甲村到乙村去办事,小红以每分120米的速度先走了一会,小明以每分140米的速度在后面追,用5分钟就追上了。小红先走了多少米?
16、甲飞机每小时飞行400千米,乙飞机每小时飞行430千米。它们同时从A城飞往B城,4小时后它们相隔多少千米?
17、一辆卡车在一辆轿车前52千米处以每小时36千米的速度开往甲地。这辆轿车每小时行40千米,多少小时后才能追上卡车?
22、夜行军时,甲队同学由于帮助受伤的同学,落在了乙队同学后面150米,乙队同学仍以每分钟80米的速度前进。老师要求甲队同学以每分钟110米的速度跑步追及,几分钟可以追上乙队?
23、一辆汽车以每小时30千米的速度从甲地开往乙地,开出4小时后,一列火车以每小时90千米的速度从甲地开往乙地,结果同时到达。甲乙两地相距多远?
24、上海路小学有一个300米的环形跑道。洋洋和宁宁同时从起跑线起跑,洋洋每秒跑6米,宁宁每秒跑4米,多少秒后洋洋能追上宁宁?这时两人各跑了多少米?
最简单的数学应用题 篇9
1、体育用品有90个乒乓球;如果每两个装一盒;能正好装完吗?如果每五个装一盒;能正好装完吗?为什么?
90÷2=45盒
90÷5=18盒
答:如果每两个装一盒;能正好装完如果每五个装一盒;也能正好装完。因为90能整除五。
2、体育店有57个皮球;每三个装在一个盒子里;能正好装完吗?
57÷3=19盒
答:能正好装完。
3、甲;乙两个人打打一份10000字的文件;甲每分打115个字;乙每分钟打135个字;几分钟可以打完?
10000÷(115+135)=40分
答:40分钟可以打完。
4、五年级同学植树;13或14人一组都正好分完;五年级参加植树的同学至少有多少人? 13x14=192人
答:五年级参加植树的人至少有192人.
下面几道题目虽然属于应用题;但跟方程有关。我都是用方程解答的。
5、两辆汽车从一个地方相背而行.一车每小时行31千米;一车每小时行44千米.经过多少分钟后两车相距300千米?
方程:
解:两车x时后相遇.
31x+44x=300
75x=300
x=4
4小时=240分钟
答:经过240分钟后两车相距300千米.
6、两个工程队要共同挖通一条长119米的隧道;两队从两头分别施工.甲队每天挖4米;乙队每天挖3米;经过多少天能把隧道挖通?
解:设x天后挖通隧道
3x+4x=119
7x=119
x=17
答:经过17天挖通隧道.
7、学校合唱队和舞蹈队共有140人;合唱队的.人数是舞蹈队的6倍;舞蹈队有多少人?解:设舞蹈队有x人
6x+x=140
7x=140
x=20人
答:舞蹈队有20人.
从这里开始不是方程题了.
8、兄弟两个人同时从家里到体育馆;路长1300米.哥哥每分步行80米;弟弟骑自行车以每分180米的速度到体育馆后立刻返回;途中与哥哥相遇;这时哥哥走了几分钟?
1300x2=2600米
2600÷(180+80)
=2600÷260
=10分
答:这时哥哥走了10分钟.
9、六一儿童节;王老师买了360块饼干;480块糖;400个水果;制作精美小礼包;分给小朋友作为礼物;至多可做几个小礼包?
360+480+400=1240个
答:至多可做1240个小礼包.
10、淘气买了40个气球;请同学来家比吹气球.为了能把气球平分;淘气应该请几个同学来比吹气球?淘气不参加.
40÷2=20人40÷4=10人40÷5=8人
40÷8=5人40÷10=4人40÷20=2人
答:请同学的方法有6种;分别是:20人;10人;5人;8人;4人;2人.
11、一块梯形的玉米地;上底15米;下底24米;高18米.每平方米平均种玉米9株;这块地一共可种多少株玉米?
(15+24)x18÷2=351平方米
351x9=3195株
答:这块地可种玉米3159株.
12、某班学生人数在100人以内;列队时;每排5人;4人;3人都刚好多一人;这班有多少人?
5x4x3=60人60+1=61人
答:这班有61人.
13、王月有一盒巧克力糖;每次7粒;5粒;3粒的数都余1粒;这盒巧克力糖至少有多少粒?
7x5x3=105粒105+1=106粒
答:这盒巧克力糖至少有106粒.
14、晨光小区有一段长15米;宽1.2米的长方形甬道要铺方砖.设计师准备了边长是30厘米的方砖;请你算一算:需要几块这样的方砖?如果每块方砖3元;那么铺这段甬道需要多少元?
15米=150分米1.2米=12分米30厘米=3分米
150x12=1800平方分米3x3=9平方分米
1800÷9=200块200x3=600元
答:需要200块这样的方砖;需要600元.
15、有两块面积相等的平行四边形实验田;一块底边长70米;高45米;另一块底边长90米;高是多少米?
70x45=3150平方米3150÷90=35米
答:高是35米.
16、一批钢管叠成一堆;最下层有10根;每上1层少放1根;最上1层放了5根.这批钢管有多少根?
10-5+1=6层(10+5)x6÷2
=15x6÷2
=90÷2
=45根
答:这批钢管有45根.
17、有一些糖果;平均分别给21个小朋友剩20块;平均分给35个小朋友剩34块;平均分给56个小朋友剩55块。你知道这堆糖果至少有多少块吗?
解:21、35、56的最小公倍数是840;840-1=839(块)
答:这堆糖果至少有839块
18、2台同样的抽水机;3小时可以浇地1.2公顷;1台抽水机每小时可以浇地多少公顷?
1.2÷3=0.4 0.4÷2=0.2
19、前年小明比妈妈小24岁;今年妈妈的年龄是小明的3倍。小明和妈妈今年分别是多少岁?
设小明年龄是x;
则3x-x=24 x=12
小明12;妈妈36
20、一个立方体的棱长总和是48分米;它的表面积和体积各是多少?
解:48÷12=4分米
则表面积为4x4=16平方分米
16x6=96平方分米
体积为4x4x4=64立方分米
最简单的数学应用题 篇10
1、甲、乙两车都从A地出发经过B地驶往C地,A,B两地的距离等于B,C两地的距离.乙车的速度是甲车速度的80%.已知乙车比甲车早出发11分钟,但在B地停留了7分钟,甲车则不停地驶往C地.最后乙车比甲车迟4分钟到C地.那么乙车出发后几分钟时,甲车就超过乙车.
2、乙、丙三人在A、B两块地植树,A地要植900棵,B地要植1250棵.已知甲、乙、丙每天分别能植树24,30,32棵,甲在A地植树,丙在B地植树,乙先在A地植树,然后转到B地植树.两块地同时开始同时结束,乙应在开始后第几天从A地转到B地?
3、一辆大轿车与一辆小轿车都从甲地驶往乙地.大轿车的速度是小轿车速度的80%.已知大轿车比小轿车早出发17分钟,但在两地中点停了5分钟,才继续驶往乙地;而小轿车出发后中途没有停,直接驶往乙地,最后小轿车比大轿车早4分钟到达乙地.又知大轿车是上午10时从甲地出发的.那么小轿车是在上午什么时候追上大轿车的.
4、小明早上从家步行去学校,走完一半路程时,爸爸发现小明的数学书丢在家里,随即骑车去给小明送书,追上时,小明还有3/10的路程未走完,小明随即上了爸爸的车,由爸爸送往学校,这样小明比独自步行提早5分钟到校.小明从家到学校全部步行需要多少时间?
5、一个圆柱形容器内放有一个长方形铁块.现打开水龙头往容器中灌水.3分钟时水面恰好没过长方体的顶面.再过18分钟水已灌满容器.已知容器的高为50厘米,长方体的高为20厘米,求长方体的底面面积和容器底面面积之比.
6、有三块草地,面积分别是5,15,24亩.草地上的草一样厚,而且长得一样快.第一块草地可供10头牛吃30天,第二块草地可供28头牛吃45天,问第三块地可供多少头牛吃80天?
7、有甲、乙两根水管,分别同时给A,B两个大小相同的水池注水,在相同的时间里甲、乙两管注水量之比是7:5.经过2+1/3小时,A,B两池中注入的 水之和恰好是一池.这时,甲管注水速度提高25%,乙管的注水速度不变,那么,当甲管注满A池时,乙管再经过多少小时注满B池?
8、甲、乙两辆清洁车执行东、西城间的公路清扫任务.甲车单独清扫需要10小时,乙车单独清扫需要15小时,两车同时从东、西城相向开出,相遇时甲车比乙车多清扫12千米,问东、西两城相距多少千米?
9、某工程,由甲、乙两队承包,2.4天可以完成,需支付1800元;由乙、丙两队承包,3+3/4天可以完成,需支付1500元;由甲、丙两队承包,2+6/7天可以完成,需支付1600元.在保证一星期内完成的前提下,选择哪个队单独承包费用最少?
10、甲数除以乙数,乙数除以丙数,商相等,余数都是2,甲、乙两数之和是478.那么甲、乙丙三数之和是几?
最简单的数学应用题(10篇)
范文对于我们来讲显得尤为重要,范文重要的参考价值是其整体框架,好的范文是什么样的呢?通过读一读“最简单的数学应用题”您或许能够找到一些解答,欢迎您来阅读本文祝您愉快!
最简单的数学应用题 篇1
对于备战小升初的同学来说,复习的好坏对小升初考试成绩的高低起着很大的影响。为此数学网小升初频道为大家提供小升初数学应用题:订购商品,希望能够真正的帮助到家长和小学生们!
张先生向商店订购某种商品80件,每件定价100元.张先生向商店经理说:“如果你肯减价,每减价1元,我就多订购4件.”商品店经理算了一下,如果减价5%,由于张先生多订购,仍可获得与原来一样多的利润.问这种商品的成本是多少元?
解法一:减价100×5%=5元,多订购5×4=20件,共订购80+20=100件。
由于利润一样,所以存在:利润×80=(利润-5)×100,可以得出利润是25元。
所以成本是100-25=75元。
解法二:减价100×5%=5元,多订购5×4=20件,如果按照原价销售,就会多获得20÷80=1/4的利润。那么减价的.5元,相当于原来利润的1-1÷(1+1/4)=1/5。那么原来的利润是5÷1/5=25元。因此成本是100-25=75元。
减价5%就是减价了:100×5%=5元
所以多订了:4×5=20件
共订购:80+20=100件
现在的售价是:(100-5)×100=9500元----------100件的成本和利润
原来的售价是:80×100=8000元--------------80件的成本和利润
因为利润一样,所以9500-8000=1500元是100-80=20件的成本
最简单的数学应用题 篇2
1.小熊捡了9个玉米,小猴捡的是小熊的4倍,他们一共捡了多少个玉米?
2. 食品店有85听可乐,上午卖了46听,下午卖了30听,还剩多少听?
3. 操场上原有16个同学,又来了14个。这些同学每5个一组做游戏,可以分成多少组?
4、超市里买4袋饼干要付8元,买8袋饼干要付多少元?
5、老师有8袋乒乓球,每袋6个,借给同学15个,还剩多少个?
6. 一小桶牛奶5元钱,一大桶牛奶是一小桶的4倍,买一大一小两桶牛奶共需要多少钱?
7、三个小队一共捉了42条虫子,第一队捉了18条,第二队捉了16条。第三小队捉了多少条虫子?
8. 王老师在文具店买了5张绿卡纸,15张红卡纸。红卡纸是绿卡纸的多少倍?
9. 二年级一班有20名男生,22名女生,平均分成6个小组,每组有几名同学?
10、一辆空调车上有42人,中途下车8人,又上来16人,现在车上有多少人?
11、红领巾养鸡场有公鸡44只,母鸡比公鸡多16只。母鸡有多少只?
12、红领巾养鸡场有母鸡60只,母鸡比公鸡多14只,公鸡有多少只?
13、小白兔有72只,小狗有9只,小白兔的只数是小狗的几倍?
14、56个桃子平均分给7只小猴,每只小猴分几个?
15、商店有自行车60辆,卖了4天,每天卖8辆,还剩多少辆?
16、 有25个苹果,梨比苹果少7个,有多少个梨?
17、花丛中有蜻蜓和蝴蝶共35只,飞走了6只,又飞来了12只。现在花丛中蜻蜓和蝴蝶有多少只?
18、停车场有卡车35辆,有轿车24辆。开走了17辆,现在有多少辆车?
19、小明做了18面绿旗,又做了32面红旗。送给幼儿园14面,小明现在还有多少面?
20、面包师傅做了54个面包,小明买走了19个,小红买走了25。你还可以买几个?
参考答案
1. 45
2. 9
3. 6
4. 16
5. 33
6. 25
7. 8
8. 3
9. 7
10. 50
11. 60
12. 46
13. 8
14. 8
15. 28
16. 18
17. 41
18. 42
19. 36
20. 10
最简单的数学应用题 篇3
221. 瓶中装有浓度为15%的酒精溶液1000克.现在又分别倒入100克和400克的A,B两种酒精溶液,瓶里的浓度变成了14%.已知A种酒精溶液是B种酒精溶液浓度的2倍.那么A种酒精溶液的浓度是多少?
三种混合后溶液重1000+100+400=1500克,含酒精14%×1500=210克,原来含酒精15%×1000=150克,说明AB两种溶液共含酒精210-150=60克。
由于A的浓度是B的2倍,因此400克B溶液的酒精含量相当于400÷2=200克A溶液酒精的含量。所以A溶液的浓度是60÷(100+200)=20%。
222. 某商店分别花同样多的钱,购进甲、乙、丙三种不同的糖果.已知甲、乙、丙三种糖果每千克的价格分别是9.60元、16元、18元.如果把这三种糖果混合成什锦糖,按20%的利润来定价,那么这种什锦糖每千克定价是多少元?
3÷(1/9.6+1/16+1/18)×(1+20%)=16.2元
223. 甲地到乙地都是坡路,有上坡也有下坡.某人骑自行车往返甲、乙两地共用4.5小时,若已知此人上坡时速度为12千米/小时,下坡速度为18千米/小时,那么甲、乙两地全长多少?
去是上坡返回就是下破,因此往返36千米共需要36÷12+36÷18=5小时,所以1小时可以往返36÷5=7.2千米。4.5小时可以往返7.2×4.5=32.4千米。
224. 一项工程,甲一人需1小时36分完成,甲、乙二人合作要1小时完成.现在由甲一人完成1/12以后,甲、乙二人一起干,但因途中甲休息,全部工作用了1小时38分完成,那么由乙单独做那部分占全部工程的几分之几?
解:乙1小时做的相当于甲36分钟做的,乙和甲的工效比是36:60=3:5。
甲做1/12用了1/12×96=8分钟。
后来用了98-8=90分钟,如果合做90分钟就要完成90÷60=3/2,实际少完成了3/2-(1-1/12)=7/12,说明甲休息这段时间可以做7/12。
这段时间就是乙单独做的,能完成7/12×3/5=7/20。
225. 设A,B,C三人沿同一方向,以一定的速度绕校园一周的时间分别是6、7、11分.由开始点A出发后,B比A晚1分钟出发,C比B晚5分钟出发,那么A,B,C第一次同时通过开始出发的地点是在A出发后几分钟?
从条件可以知道,C出发时,A刚好行了5+1=6分钟,即一圈,也就是说,A和C再次同时经过出发点时,是6×11=66的倍数分钟后。
由于B还需要7-5=2分钟才能通过,说明要满足66的倍数除以7余2分钟。当66×3=198分钟时,198÷7=28……2分钟,满足条件。
因此ABC第一次同时通过出发地点是A出发后6+198=204分钟的时候。
226. 某班同学分成若干组去植树,若每组植树N棵,且N为质数,则剩下树苗20棵,若每组植树9棵,则还缺少2棵,这个班的同学共分成几组?
解:可以看出N是小于9的质数,相差20+2=22。
说明组数是22的约数,9-N也是22的约数。
9-N小于11,所以9-N=2。
所以组数就是22÷2=11组。
227. 学校举行计算机汉字输入技能竞赛,原计划评选出一等奖15人,二等奖20人,现将一等奖中的后5人调整为二等奖,这样一等奖获得者的平均速度提高了8字/分,二等奖获得者平均速度提高了6字/分,那么原来一等奖平均速度比二等奖平均速度多多少?
原来一等奖的平均分比这5人的平均分高8×(15-5)÷5=16字
原来二等奖的平均分比这5人的平均分低6×(20+5)÷5=30字
那么原来一等奖的平均分比二等奖高16+30=46字
228. 红光农场原定9时来车接601班同学去劳动,为了争取时间,8时同学们就从学校步行向农场出发,在途中遇到准时来接他们的汽车,于是乘车去农场,这样比原定时间早到12分钟.汽车每小时行48千米,同学们步行的速度是每小时几千米?
学生步行的路程,汽车需要12÷2=6分钟,说明是在9:00前6分钟接到学生,即8:54分,说明学生行了54分钟。所以汽车的速度是步行的54÷6=9倍,因此步行的速度是每小时行48÷9=16/3千米。
229. 甲、乙两地公路长74千米,8:15一辆汽车从甲地到乙地,半个小时后,又有一辆同样速度的汽车从甲地开往乙地.王叔叔8:25从乙地骑摩托车出发去甲地,在差5分不到9点时,他遇到了第一辆汽车,9:16遇到第二辆汽车,王叔叔骑摩托车的速度是多少?
根据题意,汽车40分和摩托车30分共行74千米,汽车31分和摩托车51分共行74千米。
可以知道汽车40-31=9分钟相当于摩托车51-30=21分钟行的。
可以得到摩托车行完需要40÷9×21+30=370/3分钟。
所以摩托车小时行74÷370/3×60=36千米
230. 在底面边长为60厘米的正方形的一个长方体的容器里,直立着一个长1米,底面为正方形,边长15厘米的四棱柱铁棍.这时容器里的水半米深.现在把铁棍轻轻地向正上方提起24厘米,露出水面的四棱柱切棍浸湿部分长多少厘米?
减少24厘米的铁棍的体积,水面就要下降24×15×15÷(60×60)=1.5厘米。所以露在水面的有1.5+24=25.5厘米。
最简单的数学应用题 篇4
利润=售出价-成本
利润率=利润÷成本×100%=(售出价÷成本-1)×100%
涨跌金额=本金×涨跌百分比
折扣=实际售价÷原售价×100%(折扣<1)
利息=本金×利率×时间
税后利息=本金×利率×时间×(1-20%)
盈亏问题 (盈+亏)÷两次分配量之差=参加分配的份数 (大盈-小盈)÷两次分配量之差=参加分配的份数
(大亏-小亏)÷两次分配量之差=参加分配的.份数
1、 每份数×份数=总数 总数÷每份数=份数 总数÷份数=每份数
2、 1倍数×倍数=几倍数 几倍数÷1倍数=倍数 几倍数÷倍数=1倍数
3、 速度×时间=路程 路程÷速度=时间 路程÷时间=速度
4、 单价×数量=总价 总价÷单价=数量 总价÷数量=单价
5、 工作效率×工作时间=工作总量 工作总量÷工作效率=工作时间 工作总量÷工作时间=工作效率
6、 加数+加数=和 和-一个加数=另一个加数
7、 被减数-减数=差 被减数-差=减数 差+减数=被减数
8、 因数×因数=积 积÷一个因数=另一个因数
9、 被除数÷除数=商 被除数÷商=除数 商×除数=被除数 总数÷总份数=平均数
5 三角形 面积=底×高÷2 三角形高=面积 ×2÷底 三角形底=面积 ×2÷高
6 平行四边形 面积=底×高
7 梯形 面积=(上底+下底)×高÷2
8 圆形(1)周长=直径×∏=2×∏×半径(2)面积=半径×半径×∏
体积=侧面积÷2×半径
10 圆锥体 体积=底面积×高÷3
和差问题的公式 (和+差)÷2=大数 (和-差)÷2=小数
和倍问题 和÷(倍数-1)=小数 小数×倍数=大数 (或者 和-小数=大数)
差倍问题 差÷(倍数-1)=小数 小数×倍数=大数 (或 小数+差=大数)
相遇问题:相遇路程=速度和×相遇时间 相遇时间=相遇路程÷速度和 速度和=相遇路程÷相遇时间
追及问题:追及距离=速度差×追及时间 追及时间=追及距离÷速度差 速度差=追及距离÷追及时间
流水问题:顺流速度=静水速度+水流速度 逆流速度=静水速度-水流速度 静水速度=(顺流速度+逆流速度)÷2
水流速度=(顺流速度-逆流速度)÷2
浓度问题:溶质的重量+溶剂的重量=溶液的重量 溶质的重量÷溶液的重量×100%=浓度 溶液的重量×浓度=溶质的重
溶质的重量÷浓度=溶液的重量
植树问题
1 非封闭线路上的植树问题主要可分为以下三种情形:
⑴如果在非封闭线路的两端都要植树,那么:
株数=段数+1=全长÷株距-1
全长=株距×(株数-1)
株距=全长÷(株数-1)
⑵如果在非封闭线路的一端要植树,另一端不要植树,那么:
株数=段数=全长÷株距
全长=株距×株数
株距=全长÷株数
⑶如果在非封闭线路的两端都不要植树,那么:
株数=段数-1=全长÷株距-1
全长=株距×(株数+1)
株距=全长÷(株数+1)
2 封闭线路上的植树问题的数量关系如下
株数=段数=全长÷株距
最简单的数学应用题 篇5
1、甲、乙两框苹果重量之比是4:5,如果从乙中取6千克放入甲,则两框重量之比是5:4,两框共有多少千克?
假设两框共有X千克
(4/9X+6):(5/9X-6)=5:4
2、一个数,如果把它的小数部分扩大3倍就是4.1,如果把它的小数部分扩大9倍便是8.3,这个数是多少?
(1)整数部分+小数部分的3倍=4.1
(2)整数部分+小数部分的9倍=8.3
2式减去1式
(整数部分+小数部分的9倍)-(整数部分+小数部分的3倍)=8.3-4.1
小数部分的6倍=8.3-4.1
小数部分=0.7
整数部分:2
这个数是:2.7
3、有一块铜锌合金,铜与锌重量的比是2:3,现在加入6克锌,共得新合金36克,求新合金内铜与锌重量的比。
铜:(36-6)÷(3+2)×3=18
锌:(36-6)÷(3+2)×2=12
新合金内锌:12+6=18
铜:锌=18:18=1:1
4.操场上有一圆形花坛,在花坛四周每隔2dm摆放一盆花,一共摆了157盆。这个花坛的半径有多少米?
圆形花坛的周长:
2×157=314(分米)
圆形花坛的半径:
314÷3.14÷2=50(分米)
5.运动场的跑道中间是一个长100米,宽40米的长方形,两头是半圆形。为了平整场地,拉来8车黄沙,每车7立方米,要尽量均匀铺在跑道内,你认为应该怎么分配呢?(π取3.14)
运动场的面积:
长方形+圆100×40+3.14×(40÷2)×(40÷2)=5256(平方米)
拉来多少黄沙
7×8=56(立方米)
黄沙均匀铺在跑道内的厚度
56÷5256≈0.01(米)
6.一个等腰三角形的一个底角度数是顶角的二分之一,这个三角形的顶角是多少度?
把一个底角度数看作1份
顶角就是2份
1份:
180÷(1+1+2)=45
顶角就是2份
45×2=90
7.一个圆的周长和直径相加的合适20.7米,这个圆的面积是多少平方米?
周长=3.14×直径
圆的周长和直径相加的和是20.7米
也就是:
3.14×直径+直径=20.7米
直径×(3.14+1)=20.7
直径:20.7÷(3.14+1)=5
半径:5÷2=2.5
面积:3.14×2.5×2.5
8.小明寒假共放了45天,其中三分之一的时间在乡下姥姥家,九分之二的时间外出旅游,剩余的时间休息,学习,请你提出几个问题,并请你提出三个问题,并列式解答。
1:还剩下几分之几的时间休息
1-1/3-2/9
2:还剩下多少时间休息
45÷(1-1/3-2/9)
3:小明寒假外出旅游是多少天
45×2/9
9.寒假开始,红领巾志愿者参加社区劳动。有50%的同学扫楼道,有五分之二的同学运垃圾,在这些同学之中有7人两项都做,占志愿者总数的14%。志愿者共几人?除了扫楼道的和运垃圾的学生外,其他人擦窗户,擦窗户的几人?
在这些同学之中有7人两项都做,占志愿者总数的14%
志愿者总数的14%是7人
志愿者总数:7÷14%=50
志愿者有50%的同学扫楼道
扫楼道同学:50×50%=25
志愿者有五分之二的同学运垃圾
运垃圾同学:50×2/5=20
除了扫楼道的和运垃圾的学生外,其他人擦窗户,擦窗户的几人?
50-25-20+7=12
1.一条路,已修了全长的五分之三,还剩120千米没修.这条路全部有多少千米?
120÷(1-3/5)=300
2.小红看一本小说,第一天看了全书的五分之一,第二天看了全书的四分之一,还剩121页没有看,这本小说共多少页?
最简单的数学应用题 篇6
小学数学除了简单的计算,到了小学高年级阶段,开始出现应用题。应用题是把含有数量关系的实际问题用文字叙述出来所形成的题目。下面是关于小学数学倍数的应用题,一起来练习吧!
【倍数问题】
一、求一个数的几倍就乘以几,要用乘法
1. 3的5倍是多少?
3x5=15 答:3的5倍是15。
2. 4的10倍是多少?
3. 7的9倍是多少?
二、求一个数是另一个数的几倍,用除法,用大数除以小的数
1. 45是9的多少倍?
2. 45÷9=5 答:45是9的5倍。
3. 35是5的多少倍?
4. 72是8的多少倍?
【应用问题】
(一)、求一个数的几倍是多少?
公式 :小数 × 倍 数 =大 数
相当于:平均数× 份 数 =总数
相当于:1倍数X倍 数 = 几倍的数
相当于:每份数X份数 = 总 数
1、小明今年9岁,爸爸的年龄是小玲的5倍,爸爸今年多少岁?
2、买一支笔2元钱,买60支这样的笔要多少钱?
能吃多少只害虫?
(二)、求一个数是另一个数的几倍?
公式: 大数 ÷ 小 数 = 倍数
相当于: 几倍的数 ÷ 1倍数= 倍数
相当于:总 数 ÷ 平均数 = 份 数
相当于:总数 ÷ 每份数 = 份 数
1、小明今年9岁,爸爸今年45。爸爸的年龄是小玲的几倍?
2、买一支笔2元钱,花120元可以买多少支这样的笔要多少钱?
3、三个同学做纸花。做了24朵红花,6朵黄花。红花是黄花的几倍?
班共有46名学生,每两人用一张课桌,一共需要多少张课桌?把这些课桌每4张摆一行,能摆多少行?还剩几张?
(三)、求一倍数?
公式:大 数 ÷ 倍数 = 小数
相当于: 几倍的数 ÷ 倍数= 1倍 数
相当于: 总 数 ÷ 份数= 平均数
相当于: 总 数 ÷ 份 数 = 每份数
1、爸爸今年45岁,是小玲年龄的5倍,小明今年多少岁?
2、一只东北虎的重量是360千克,大约是一只鸵鸟的`4倍,是一只企鹅的4倍,是一只企鹅的9倍。问鸵鸟多少千克?企鹅多少千克?
3、买一支笔2元钱,花120元可以买多少支这样的笔要多少钱?
4、饲养小组有母鸡12只,恰好是公鸡的3倍,公鸡有几只?
5、图书馆买来40本故事书,是科技书的5倍,科技书几本?
6、一只海狮重378千克,是一只企鹅体重的9倍。这只企鹅的体重是多少千克?
8、公园运来160盆花,准备摆在4个花坛里。平均每个花坛摆多少盆花?
9、一部儿童电视剧共336分钟。分8集播放,每集大约播放多长时间?
星光小学832名学生分4批去参观天文馆。平均每批有多少人?
奥林匹克火炬在某地传递4天传递了816千米。平均每天传递了多少千米?
有530把椅子,分5次运完。平均每次运多少把?如果分4次运呢?
丁小林家到学校有450米。他每天上学大约走8分钟,他每分钟大约走多少米?
三年级的225名学生要乘5辆车去春游。如果每辆车坐的人同样多,每辆车应该坐多少人?
(四)几倍多几?
公式:小数1×倍数+小数2=大数
1、文具店运来三箱红墨水,每箱100瓶。运来的兰墨水比红墨水多200瓶,运来兰墨水多少瓶?
2、一只猴子重25千克,一头熊猫的体重比猴子的6倍还多12千克一头熊猫的体重是多少?
(五)几倍少几 ?
公式:小数1×倍数-小数2=大数
1、王大伯前年养猪2头,去年养猪头数是前年的3倍,到年底卖了4头,还有几头?
2、一个牧民养了76只山羊,养的绵羊比山羊的4倍少16只。这个牧民养了多少只绵羊?
3、一户菜农去年收黄瓜520千克。收的西红柿是黄瓜的3倍,收的茄子比西红柿少260千克。收茄子多少千克?
【综合题】
1、三年级的学生去茶园里劳动。女生有56人,男生有64人。4名学生分成一组,一共可以分成多少组?
【倍数的综合——比较问题】
1、一个单位有620人到温泉山庄度假。1辆大客车能坐58人,11辆大客车能一次送走这些人吗?
2、小梦和小欣整理照片。一共有238张照片。每页可插6张要插多少页?如果一本相册有24页,1本相册能插得下这些照片吗?2本呢?
最简单的数学应用题 篇7
最新小升初数学应用题试卷精选
1. 一台拖拉机5小时耕地40公顷,照这样的速度,耕72公顷地需要几小时?
要求耕72公顷地需要几小时,我们就要先求出这台拖拉机每小时耕地多少公顷?
(1)每小时耕地多少公顷?
405=8(公顷)
(2)需要多少小时?
728=9(小时)
答:耕72公顷地需要9小时。
4. 小华每分拍球25次,小英每分比小华少拍5次。照这样计算,小英5分拍多少次?小华要拍同样多次要用几分?
(1)小英每分拍多少次?
25-5=20(次)
(2)小英5分拍多少次?
205=100(次)
(3)小华要几分拍100次?
10025=4(分)
答:小英5分拍100次,小华要拍同样多次要用4分。
5. 刘老师搬一批书,每次搬15本,搬了12次,正好搬完这批书的一半。剩下的.书每次搬20本,还要几次才能搬完?
(1)12次搬了多少本?
1512=180(本)
搬了的与没搬的正好相等
(2)要几次才能把剩下的搬完?
18020=9(次)
答:还要9次才能搬完。
三. 独立思考(答题时间:15分钟)
1. 在下图中,用16根等长的小棒,摆出5个正方形,移动其中3根,使它成为4个正方形。
2. 商店运来苹果和梨各一吨,5筐苹果的重量和4筐梨的重量相等。每筐苹果重20千克,商店运来苹果和梨各多少筐?每筐梨重多少千克?
2 纺织厂运来一堆煤,如果每天烧煤1500千克,6天可以烧完。如果每天烧1000千克,可以多烧几天?
要想求可以多烧几天,就要先知道这堆煤每天烧1000千克可以烧多少天;而要求每天烧1000千克,可以烧多少天,还要知道这堆煤一共有多少千克。
(1)这堆煤一共有多少千克?
15006=9000(千克)
(2)可以烧多少天?
90001000=9(天)
(3)可以多烧多少天?
9-6=3(天)
二. 合作交流
1. 把7本相同的书摞起来,高42毫米。如果把28本这样的书摞起来,高多少毫米?(用不同的方法解答)
方法1:
(1)每本书多少毫米?
427=6(毫米)
(2)28本书高多少毫米?
628=168(毫米)
方法2:
(1)28本书是7本书的多少倍?
287=4
(2)28本书高多少毫米?
424=168(毫米)
2. 两个车间装配电视机。第一车间每天装配35台,第二车间每天装配37台。照这样计算,这两个车间15天一共可以装配电视机多少台?
方法1:
(1)两个车间一天共装配多少台?
35+37=72(台)
(2)15天共可以装配多少台?
7215=1080(台)
方法2:
(1)第一车间15天装配多少台?
3515=525(台)
(2)第二车间15天装配多少台?
3715=555(台)
(3)两个车间一共可以装配多少台?
555+525=1080(台)
答:15天两个车间一共可以装配1080台。
3. 同学们到车站义务劳动,3个同学擦12块玻璃。(补充不同的条件求问题,编成两道不同的两步计算应用题)。
补充1:照这样计算,9个同学可以擦多少块玻璃?
(1)每个同学可以擦几块玻璃?
123=4(块)
(2)9个同学可以擦多少块?
49=36(块)
答:9个同学可以擦36块。
补充2:照这样计算,要擦40块玻璃,需要几个同学?
(1)每个同学可以擦几块玻璃?
123=4(块)
(2)擦40块需要几个同学?
最简单的数学应用题 篇8
1、修路队修一条长1500米的公路,已经修好了300米,剩下的要在6天修完,平均每天要修多少米?
2、运动场跑道一圈是400米,王叔叔每天坚持跑2圈半。他每天跑多少米?
3、小丽走一步长约5分米,她从家到学校一共走了540步,算一算,她家到学校大约有多少米?
4、兰兰身高134厘米,东东比兰兰高5厘米。东东身高是多少厘米?
5、红领巾小学三年级有男生257人,女生235人,已经体检身体的有387人,没有体检的有多少人?
6、图书室借出456本图书,还剩207本,现在又还回285本,图书室里现在有多少本?
7、红领巾小学买来皮球380个,足球70个,课外活动时借出去423个,现在学校还剩多少个球?
8、三(2)班捐赠图书400本后还剩273本,现在又买来125本,现在三(2)班有图书多少本?
9、冬冬想买一辆310元的滑板车,已经攒了200元。如果他每月攒30元,再攒几个月就够了?
10、东方红小学的学生为希望工程共捐赠900本书,其中故事书326本,科技书475本,其余的是连环画。连环画有多少本?
11、一个正方形的边长是8厘米,如果把它的边长增加10厘米,那么它的周长增加多少厘米?
12、一个长方形的操场周长是400米,长是宽的3倍,这个操场的长和宽各是多少米?
13、有两个同样的长方形,长是8分米,宽是4分米。如果把它们拼成一个长方形,这个长方形的周长是多少分米?如果拼成一个正方形,这个正方形的周长是多少分米?
14、冬冬借了一本科技书有40页,一周后归还,他每天准备看6页,能按时归还吗?
15、三(2)班有44人,老师准备分成8个小组讨论,每组可分几人,还剩几人?
16、用一段长4米的布料可以裁5件同样大小的背心。做一件背心要用多少布?
17、一头小象重4吨,用一辆载重10吨的大货车运,一次最多能运几头小象?
18、红旗连锁店原有瓶干632袋,卖出385袋,又运来200袋,这时店里有多少袋瓶干?
19、学校买来810本练习册,一年级领走168本,二年级领走165本,还剩多少本?
20、一列火车的第10号车厢原有116人,到某站后,有58人下车,有45人上本。再开车时,这节车厢有多少人?
参考答案
1. 200
2. 1000
3. 5分米=0.5米,0.5×540=270(米)
4. 139
5. 105
6. 492
7. 27
8. 398
9. 4
10. 99
11. 10×4=40(厘米)
12. 3+1=4400÷4÷2=50(米)50×3=150(米)
13. 拼成的长方形的长是:8+8=16(分米)拼成的长方形的周长:(16+4)×2=20×2=40(分米)(2)拼成的正方形的边长是8分米拼成的正方形的周长是:8×4=32(分米)
14. 能
15. 5 4
16. 0.8米
17. 2
18. 477
19. 477
20. 103
最简单的数学应用题 篇9
1、谈话:(1)(拿起粉笔)工厂里生产出一支一支的粉笔,卖给我们的学校是不是一支一支拿过来呢?(得出先装成盒再装成箱)
(2)生举例子:生活中这样的例子还有很多很多,你们还能举吗?(举出不同情况的例子)
2、动手操作、加深印象:把12支铅笔平均分成2份,每份是几?把每份6支平均分成3份,每份是几?
小结:刚才进行了几次平均分?
3、提供材料:假设一个工厂生产了4800支粉笔、每60支装
一盒、每20盒装一箱、装了4箱。
(1)观察从这些材料中你知道了什么?
(2)选择其中的一些材料,提出问题编出应用题。
4、呈现学生编的应用题;
(1)一步计算的、两步计算的、
(2)解决一步计算的与两步计算的连乘的应用题
(个别学生说说自己的理由)
如:一个工厂生产了4800支粉笔,平均装了4箱,每20盒装一箱,平均每盒装多少支?(可能也有不同的:如问题是装了几箱。)
最简单的数学应用题 篇10
关于小升初数学应用题公式集锦
小升初数学应用题各类型公式集锦,包括植树问题、盈亏问题、相遇问题、追及问题、流水问题、浓度问题、利润与折扣问题公式。
植树问题 :
1. 非封闭线路上的植树问题主要可分为以下三种情形:
⑴如果在非封闭线路的两端都要植树,那么:
株数=段数+1=全长÷株距-1
全长=株距×(株数-1)
株距=全长÷(株数-1)
⑵如果在非封闭线路的一端要植树,另一端不要植树,那么:
株数=段数=全长÷株距
全长=株距×株数
株距=全长÷株数
⑶如果在非封闭线路的两端都不要植树,那么:
株数=段数-1=全长÷株距-1
全长=株距×(株数+1)
株距=全长÷(株数+1)
2. 封闭线路上的植树问题的'数量关系如下
株数=段数=全长÷株距
全长=株距×株数
株距=全长÷株数
盈亏问题 :
(盈+亏)÷两次分配量之差=参加分配的份数
(大盈-小盈)÷两次分配量之差=参加分配的份数
(大亏-小亏)÷两次分配量之差=参加分配的份数
相遇问题 :
相遇路程=速度和×相遇时间
相遇时间=相遇路程÷速度和
速度和=相遇路程÷相遇时间
追及问题 :
追及距离=速度差×追及时间
追及时间=追及距离÷速度差
速度差=追及距离÷追及时间
流水问题 :
顺流速度=静水速度+水流速度
逆流速度=静水速度-水流速度
静水速度=(顺流速度+逆流速度)÷2
水流速度=(顺流速度-逆流速度)÷2
浓度问题 :
溶质的重量+溶剂的重量=溶液的重量
溶质的重量÷溶液的重量×100%=浓度
溶液的重量×浓度=溶质的重量
溶质的重量÷浓度=溶液的重量
利润与折扣问题:
利润=售出价-成本
利润率=利润÷成本×100%=(售出价÷成本-1)×100%
涨跌金额=本金×涨跌百分比
折扣=实际售价÷原售价×100%(折扣<1)
利息=本金×利率×时间
最简单的数学应用题5篇
最简单的数学应用题 篇1
小学数学除了简单的计算,到了小学高年级阶段,开始出现应用题。应用题是把含有数量关系的实际问题用文字叙述出来所形成的题目。下面是关于小学数学倍数的应用题,一起来练习吧!
【倍数问题】
一、求一个数的几倍就乘以几,要用乘法
1. 3的5倍是多少?
3x5=15 答:3的5倍是15。
2. 4的10倍是多少?
3. 7的9倍是多少?
二、求一个数是另一个数的几倍,用除法,用大数除以小的数
1. 45是9的多少倍?
2. 45÷9=5 答:45是9的5倍。
3. 35是5的多少倍?
4. 72是8的多少倍?
【应用问题】
(一)、求一个数的几倍是多少?
公式 :小数 × 倍 数 =大 数
相当于:平均数× 份 数 =总数
相当于:1倍数X倍 数 = 几倍的数
相当于:每份数X份数 = 总 数
1、小明今年9岁,爸爸的年龄是小玲的5倍,爸爸今年多少岁?
2、买一支笔2元钱,买60支这样的笔要多少钱?
能吃多少只害虫?
(二)、求一个数是另一个数的几倍?
公式: 大数 ÷ 小 数 = 倍数
相当于: 几倍的数 ÷ 1倍数= 倍数
相当于:总 数 ÷ 平均数 = 份 数
相当于:总数 ÷ 每份数 = 份 数
1、小明今年9岁,爸爸今年45。爸爸的年龄是小玲的几倍?
2、买一支笔2元钱,花120元可以买多少支这样的笔要多少钱?
3、三个同学做纸花。做了24朵红花,6朵黄花。红花是黄花的几倍?
班共有46名学生,每两人用一张课桌,一共需要多少张课桌?把这些课桌每4张摆一行,能摆多少行?还剩几张?
(三)、求一倍数?
公式:大 数 ÷ 倍数 = 小数
相当于: 几倍的数 ÷ 倍数= 1倍 数
相当于: 总 数 ÷ 份数= 平均数
相当于: 总 数 ÷ 份 数 = 每份数
1、爸爸今年45岁,是小玲年龄的5倍,小明今年多少岁?
2、一只东北虎的重量是360千克,大约是一只鸵鸟的`4倍,是一只企鹅的4倍,是一只企鹅的9倍。问鸵鸟多少千克?企鹅多少千克?
3、买一支笔2元钱,花120元可以买多少支这样的笔要多少钱?
4、饲养小组有母鸡12只,恰好是公鸡的3倍,公鸡有几只?
5、图书馆买来40本故事书,是科技书的5倍,科技书几本?
6、一只海狮重378千克,是一只企鹅体重的9倍。这只企鹅的体重是多少千克?
8、公园运来160盆花,准备摆在4个花坛里。平均每个花坛摆多少盆花?
9、一部儿童电视剧共336分钟。分8集播放,每集大约播放多长时间?
星光小学832名学生分4批去参观天文馆。平均每批有多少人?
奥林匹克火炬在某地传递4天传递了816千米。平均每天传递了多少千米?
有530把椅子,分5次运完。平均每次运多少把?如果分4次运呢?
丁小林家到学校有450米。他每天上学大约走8分钟,他每分钟大约走多少米?
三年级的225名学生要乘5辆车去春游。如果每辆车坐的人同样多,每辆车应该坐多少人?
(四)几倍多几?
公式:小数1×倍数+小数2=大数
1、文具店运来三箱红墨水,每箱100瓶。运来的兰墨水比红墨水多200瓶,运来兰墨水多少瓶?
2、一只猴子重25千克,一头熊猫的体重比猴子的6倍还多12千克一头熊猫的体重是多少?
(五)几倍少几 ?
公式:小数1×倍数-小数2=大数
1、王大伯前年养猪2头,去年养猪头数是前年的3倍,到年底卖了4头,还有几头?
2、一个牧民养了76只山羊,养的绵羊比山羊的4倍少16只。这个牧民养了多少只绵羊?
3、一户菜农去年收黄瓜520千克。收的西红柿是黄瓜的3倍,收的茄子比西红柿少260千克。收茄子多少千克?
【综合题】
1、三年级的学生去茶园里劳动。女生有56人,男生有64人。4名学生分成一组,一共可以分成多少组?
【倍数的综合——比较问题】
1、一个单位有620人到温泉山庄度假。1辆大客车能坐58人,11辆大客车能一次送走这些人吗?
2、小梦和小欣整理照片。一共有238张照片。每页可插6张要插多少页?如果一本相册有24页,1本相册能插得下这些照片吗?2本呢?
最简单的数学应用题 篇2
1、甲、乙两人分别从A、B两地同时出发,相向而行,乙的速度是甲的2/3,两人相遇后继续前进,甲到达B地,乙到达A地立即返回,已知两人第二次相遇的地点距离第一次相遇的地点是3000米,求A、B两地的距离.
解:第一次相遇时,两人合行了一个全程,其中乙行了全程的2÷(2+3)=2/5
第二次相遇时,两人合行了3个全程,其中乙行了全程的2/5×3=6/5
两次相遇点之间的距离占全程的2-6/5-2/5=2/5
所以全程是3000÷2/5=7500米。
解乙的速度是甲的2/3即甲速:乙速=3:2所以第一次相遇时甲走了全程的3/5,乙走了全程的2/5
第二次相遇的地点距第一次相遇甲共走了2倍全程的3/5=6/5,乙走了2倍全程的2/5=4/56/5-4/5=2/5,即相差全程的2/5A、B两地的距离=3000/(2/5)=7500米
综合:3000/[2*3/(2+3)-2*2/(3+2)]=50(千米)
76.一条船往返于甲、乙两港之间,已知船在静水中的速度为9千米/小时,平时逆行与顺行所用时间的比为2:1.一天因下雨,水流速度为原来的2倍,这条船往返共用10小时,问甲、乙两港相距多少千米?
C顺水速度是逆水速度的2倍,那么逆水速度就是水流速度的2倍,静水速度就是水流速度的3倍,所以水流速度是9÷3=3千米/小时
下雨时,水流速度是3×2=6千米/小时,
逆行速度是9-6=3千米/小时
顺行速度是9+6=15千米/小时
所以往返时,逆行时间和顺行时间比是5:1
所以顺行时间是10÷(5+1)=5/3小时
所以甲乙两港相距5/3×15=25千米
解:无论水速多少,逆水与顺水速度和均为9*2=18
故:
水速FlowSpeed=18/3/2=3;
船速ShipSpeed=FlowSpeed+18/3=9;
whenrains,Flowspeed=6;
顺水s1=9+6=15;
逆水s2=9-6=3;
顺水单程时间10*(3/(15+3))=5/3;
so,相距5/3*15=25km
2.某学校入学考试,确定了录取分数线,报考的学生中,只有1/3被录取,录取者平均分比录取分数线高6分,没有被录取的同学其平均分比录取分数线低15分,所有考生的平均分是80分,问录取分数线是多少分?
解:假设每组三人,其中3×1/3=1人被录取。每组总得分80×3=240分。录取者比没有被录取者多6+15=21分。所以,没有被录取的分数是(240-21)÷3=73分所以,录取分数线是73+15=88分
解:因为没录取的学生数是录取的学生数的:
(1-1/3)/1/3=2倍,二者的平均分之间相差:15+6=21分的距离,所以,在均衡分数时,没录取的学生平均分每提高一分,录取的学生的平均分就要降低2分,这样二者的分差就减少了3分,21/3=7,即要进行7次这样的均衡才能达到平均分80分,在这个均衡过程中,录取的学生的平均分降低了:2*7=14分,
所以,录取分数线是:80+14-6=88分,
3.一群学生搬砖,如果有12人每人各搬7块,其余的每人搬5块,那么最后余下148块;如果有30人每人各搬8块,其余的每人搬7块,那么最后余下20块.问学生共有多少人?砖有多少块?
解:如果每人搬7块,就会余下30×(8-7)+20=50块
所以搬5块的人有(148-50)÷(7-5)=49人
所以学生共有12+49=61人,砖有61×7+50=477块。
解:12人每人各搬7块,当他们搬8块的时候,多搬了12块
18人每人各搬5块,当他们搬动8块的时候,多搬了18*3=54块
所以30人多搬了54+12=66块其余人搬动了148-20-66=62块
而这些其它人每人多搬动了2块,所以其他人的人数为62/2=31
所以,一共有学生61人
砖块的数量:12*7+49*5+148=477
解:把30人分成12人和18人两部分,12人每人各搬7块,若他们搬8块,则多搬了12*1=12块,18人每人各搬5块,若他们搬8块,则多搬了18*3=54块,
所以30人多搬了54+12=66块其余人搬动了148-20-66=62块,而这些其它人每人多搬动了7-5=2块,所以其他人的人数为62÷2=31所以,一共有学生61人砖块的数量:12*7+49*5+148=477块
最简单的数学应用题 篇3
[专题介绍]
工厂和商店有时减价出售商品,通常我们把它称为“打折扣”出售,几折就是百分之几十。
利润问题也是一种常见的百分数应用题,商店出售商品总是期望获得利润,一般情况下,商品从厂家购进的价格称为本价,商家在成本价的基础上提高价格出售,所赚的钱称为利润,利润与成本的百分比称之为利润率。期望利润=成本价×期望利润率。
[经典例题]
例1、某商店将某种DVD按进价提高35%后,打出“九折优惠酬宾,外送50元出租车费”的广告,结果每台仍旧获利208元,那么每台DVD的进价是多少元?(B级)
解:定价是进价的1+35%
打九折后,实际售价是进价的135%×90%=121.5%
每台DVD的实际盈利:208+50=258(元)
每台DVD的进价258÷(121.5%-1)=1200(元)
答:每台DVD的进价是1200元
例2:一种服装,甲店比乙店的进货便宜10%甲店按照20%的利润定价,乙店按照15%的利润定价,甲店比乙店的出厂价便宜11.2元,问甲店的进货价 是多少元?(B级)
分析:
解:设乙店的成本价为1
(1+15%)是乙店的定价
(1-10%)×(1+20%)是甲店的定价
(1+15%)-(1-10%)×(1+20%)=7%
11.2÷7%=160(元)
160×(1-10%)=144(元)
答:甲店的进货价为144元。
例3、原来将一批水果按100%的利润定价出售,由于价格过高,无人购买,不得不按38%的利润重新定价,这样出售了其中的40%,此时因害怕剩余水果会变质,不得不再次降价,售出了全部水果。结果实际获得的总利润是原来利润的30.2%,那么第二次降价后的价格是原来定价的百分之几?(B级)
分析:
要求第二次降价后的价格是原来定价的百分之几,则需要求出第二次是按百分之几的利润定价。
解:设第二次降价是按x%的利润定价的。
38%×40%+x%×(1-40%)=30.2%
X%=25%
(1+25%)÷(1+100%)=62.5%
答:第二次降价后的价格是原来价格的62.5%
最简单的数学应用题 篇4
1、有一根圆柱体钢材长1米,如果把它横截成两段,表面积就增加6.28平方分米,这根圆柱体钢材的表面积是多少平方分米?
2、一节圆柱体的铁皮烟囱长1.2米,直径是0.2米,做这样的烟囱300节,至少要用铁皮多少平方米?
3.六年级一班男生人数是女生人数的7分之6.写出男生人数和全班人数的比。
4.已知甲数除以已数的商是4.25,求甲数与已数的最简整数比.
5.一块6万平方米的森林,一年大约要蒸发4.8万吨水。平均1万平方米森林一年大约蒸发多少万吨水?
6.每平方米阔叶林一天能释放氧气75克,是每平方米草地所释放氧气的5倍。每平方米草地一天能释放氧气多少克?
7.20xx年我国完成造林面积912万公顷,比20xx年增加了135万公顷。20xx年我国完成造林面积多少万公顷?
8.甲、乙两班共有学生99人,如果抽调甲班人数的十分之一去乙班后,那么甲、乙两班人数的比为5:6。这两个班原有人数各是多少?
9.开发区要开辟一片土地,每天平整0.5公顷,60天可以完成任务。现在要求提前10天完成任务,每天要比原来多平整多少公顷?(列方程解)
10.农业银行想把5元的人民币220张,完全换成2角的,可以换多少张?(用两种方法解答)
最简单的数学应用题 篇5
1. 某地收取电费的标准是:每月用电量不超过50度,每度收5角;如果超出50度,超出部分按每度8角收费.每月甲用户比乙用户多交3元3角电费,这个月甲、乙各用了多少度电?
因为33÷8=4...1,33÷5=6...3,即都有余数,所以,既不可能两户都达到或超过50度用电量,也不可能两户都未达到50度用电量,因此只有一种情况:
2. 王师傅计划用2小时加工一批零件,当还剩160个零件时,机器出现故障,效率比原来降低1/5,结果比原计划推迟20分钟完成任务,这批零件有多少个?
效率比原来降低1/5,即变为原来的4/5,那么所用时间就是原来的5/4,比原来多用:
5/4-1=1/4
所以,推迟的20分钟就是原来完成160个零件所用时间的1/4。原来完成160个零件需要:
20/(1/4)=80分钟
这批零件共有:160/(80/120)=240个。
160个的时间比是4:5,相差1份,是20分钟
4份是80分钟
160个前做了120-80=40分,
80分160个,40分160/2=80
160+80=240
我也来做一种方法:
推迟的20分钟,即1/3小时相当于后来用时的1/5,所以,后来用时1/3÷1/5=5/3小时
原来的工效做160个零件就用了5/3-1/3=4/3小时。
所以,每小时可以完成160÷4/3=120个
2小时完成任务,这批零件就有120×2=240个
33. 妈妈给了红红一些钱去买贺年卡,有甲、乙、丙三种贺年卡,甲种卡每张0.50元,丙种卡每张1.20元.用这些钱买甲种卡要比买乙种卡多8张,买乙种卡要比买丙种卡多买6张.妈妈给了红红多少钱?乙种卡每张多少钱?
买甲比买丙多8+6=14张,而丙每张比甲贵0.70元,多买14张甲一共0.50*14=7元,所以可以支付丙7/0.70=10张,钱数一共是1.20*0=12元,可以买乙10+6=16张,所以乙的价钱是12/16=0.75元。
34. 一位老人有五个儿子和三间房子,临终前立下遗嘱,将三间房子分给三个儿子各一间.作为补偿,分到房子的三个儿子每人拿出1200元,平分给没分到房子的两个儿子.大家都说这样的分配公平合理,那么每间房子的价值是多少元?
我的思路是这样的。
三个儿子共拿出1200×3=3600元,
这3600元刚好就是两个儿子应该分得的钱。
每个儿子应该分得3600÷2=1800元。
三间房子共值1800×5=9000元,
那么每间房子值9000÷3=3000元。
再做一种思路:
每人应该分得3÷5=3/5间房子,那么分得房子的就多分了1-3/5=2/5间
也就是说2/5间房子值1200元,所以每间房子值1200÷2/5=3000元
继续分享算法:
如果还有5-3=2间房子,每人都分得房子,那么就要拿出1200×5=6000元
所以,每间房子值6000÷2=3000元。
35. 小明和小燕的画册都不足20本,如果小明给小燕A本,则小明的画册就是小燕的2倍;如果小燕给小明A本,则小明的画册就是小燕的3倍.原来小明和小燕各有多少本画册?
我的思考如下:
小燕两次相差2A,且两次相差总画册的1/3-1/4=1/12
当A=1时,两人的总和是2÷1/12=24本,少于38本
当A=2时,两人的总和是4÷1/12=48本,多于38本
所以,A=1
第一次交换,小燕有24×1/3=8本,
原来小燕有8-1=7本
小明有24-7=17本
36. 有红、黄、白三种球共160个.如果取出红球的1/3,黄球的1/4,白球的1/5,则还剩120个;如果取出红球的1/5,黄球的1/4,白球的1/3,则剩116个,问(1)原有黄球几个?(2)原有红球、白球各几个?
先理清思路:根据题意可以得出下面的关系。
37. 爸爸、哥哥、妹妹三人现在的年龄和是64岁,当爸爸的年龄是哥哥年龄的3倍时,妹妹是9岁.当哥哥的年龄是妹妹年龄的2倍时,爸爸是34岁.现在三人的年龄各是多少岁?
充分利用年龄差来解答问题。
妹妹:9岁, 哥哥:兄妹差+9 ,爸爸:(兄妹差+9)×3
妹妹:兄妹差, 哥哥:兄妹差×2,爸爸:34岁
因为爸爸和哥哥的年龄差也将恒定不变。
所以,(兄妹差+9)×2=34-兄妹差×2
所以,兄妹差是(34-2×9)÷4=4岁
即当妹妹9岁时,哥哥4+9=13岁,爸爸13×3=39岁
三人年龄和是9+13+39=61岁
所以,再过(64-61)÷3=1年,年龄和就是64岁了。
所以,现在妹妹9+1=10岁,哥哥13+1=14岁,爸爸39+1=40岁
38. B在A,C两地之间.甲从B地到A地去送信,出发10分钟后,乙从B地出发去送另一封信.乙出发后10分钟,丙发现甲乙刚好把两封信拿颠倒了,于是他从B地出发骑车去追赶甲和乙,以便把信调过来.已知甲、乙的速度相等,丙的速度是甲、乙速度的3倍,丙从出发到把信调过来后返回B地至少要用多少时间?
我选择让丙先去追后出发的乙,10÷(3-1)=5分钟追上,
拿到信后去追甲,甲乙相距甲行10+10+10+5+5=40分钟的路程,
丙用40÷(3-1)=20分钟追上甲
交换信后返回追乙,这时乙丙相距乙行40+20×2=80分钟的路程,
丙用80÷(3-1)=40分钟追上乙,把信交给乙。
所以,共用了5+20+40=65分钟。
乙共行了65+10=75分钟,丙回到B地还要75÷3=25分钟。
所以共用去65+25=90分钟
又想到一个思路,追上并返回。
追上乙并返回,需要10÷(3-1)×2=10分钟
追上甲并返回,需要10×3÷(3-1)×2=30分钟
再追上乙并返回,需要(10×2+30)÷(3-1)×2=50分钟
共用10+30+50=90分钟
39. 甲、乙两个车间共有94个工人,每天共加工1998竹椅.由于设备和技术的不同,甲车间平均每个工人每天只能生产15把竹椅,而乙车间平均每个工人每天可以生产43把竹椅.甲车间每天竹椅产量比乙车间多几把?
假设全是甲车间的工人,共生产:94*15=1410把;
40. 甲放学回家需走10分钟,乙放学回家需走14分钟.已知乙回家的路程比甲回家的路程多1/6,甲每分钟比乙多走12米,那么乙回家的路程是几米?
如果甲的速度和乙相同,那么甲的路程应该是乙的10/14=5/7,比乙少2/7;
而实际甲是乙的6/7,比乙少1/7,是因为甲每分钟比乙多走12米、10分钟共多走12*10=120米。
所以,这120米就是乙路程的2/7-1/7=1/7;
乙回家的路程为:120/(1/7)=840米。
我也做两种基本的方法
方法一:
乙行甲那么远的路,就要14÷(1+1/6)=12分钟
所以甲回家有12÷(1/10-1/12)=720米
所以乙回家的路程是720×(1+1/6)=840米
方法二:
甲行乙那么所需要的时间是10×(1+1/6)=35/3分钟
所以乙回家的路程是12÷(3/35-1/14)=840米
比实际少生产:1998-1410=588把;
一个甲车间工人换成乙车间的,多生产:43-15=28把;
乙车间共有工人:588/28=21人;
甲车间每天比乙车间多生产:1998-21*43*2=192把。
红球×1/3+黄球×1/4+白球×1/5=160-120=40………………①
红球×1/5+黄球×1/4+白球×1/3=160-116=44………………②
红球+黄球+白球=160………………………………………………③
利用初中的代数消元法思想来解答。
如果按照第一种方案,取160÷40=4次刚好取完,
红球还差4/3-1=1/3,白球就多出1-4/5=1/5,黄球取完了,
说明红球的1/3和白球的1/5相等,红球和白球的个数比是3:5
按照两种方案的比较发现,白球的1/3-1/5=2/15比红球的2/15多4个
即白球比红球多4÷2/15=30个
所以红球有30÷(5-3)×3=45个,白球有45+30=75个
黄球就是160-45-75=40个
甲超过了50度,乙未达到 50度。
因为33=5*5+8,可以得出:
甲用电:50+1=51度,乙用电:50-5=45度。
如果都超过50度,那么相差就应该是8的倍数,显然33不是8的倍数;
如果都没有超过50度,那么相差就应该是5的倍数,同样33也不是5的倍数。
因此,甲50度以上,乙50度以下。
33-8×n的得数是5的倍数(从个位数字可以得出)只有33-8×1=25=5×5符合要求。
所以甲50+1=51度,乙50-5=45度
最简单的数学应用题11篇
你还在因范文的撰写而思绪纷纷吗?越来越多的人已经意识到范文对于提高写作水平的重要作用。我们需要重视范文的整体构思借鉴,57梯子网小编今天为大家带来的是一篇介绍“最简单的数学应用题”的文章,供您在工作和学习中参考切勿转载或抄袭他人作品!
最简单的数学应用题 篇1
221. 瓶中装有浓度为15%的酒精溶液1000克.现在又分别倒入100克和400克的A,B两种酒精溶液,瓶里的浓度变成了14%.已知A种酒精溶液是B种酒精溶液浓度的2倍.那么A种酒精溶液的浓度是多少?
三种混合后溶液重1000+100+400=1500克,含酒精14%×1500=210克,原来含酒精15%×1000=150克,说明AB两种溶液共含酒精210-150=60克。
由于A的浓度是B的2倍,因此400克B溶液的酒精含量相当于400÷2=200克A溶液酒精的含量。所以A溶液的浓度是60÷(100+200)=20%。
222. 某商店分别花同样多的钱,购进甲、乙、丙三种不同的糖果.已知甲、乙、丙三种糖果每千克的价格分别是9.60元、16元、18元.如果把这三种糖果混合成什锦糖,按20%的利润来定价,那么这种什锦糖每千克定价是多少元?
3÷(1/9.6+1/16+1/18)×(1+20%)=16.2元
223. 甲地到乙地都是坡路,有上坡也有下坡.某人骑自行车往返甲、乙两地共用4.5小时,若已知此人上坡时速度为12千米/小时,下坡速度为18千米/小时,那么甲、乙两地全长多少?
去是上坡返回就是下破,因此往返36千米共需要36÷12+36÷18=5小时,所以1小时可以往返36÷5=7.2千米。4.5小时可以往返7.2×4.5=32.4千米。
224. 一项工程,甲一人需1小时36分完成,甲、乙二人合作要1小时完成.现在由甲一人完成1/12以后,甲、乙二人一起干,但因途中甲休息,全部工作用了1小时38分完成,那么由乙单独做那部分占全部工程的几分之几?
解:乙1小时做的相当于甲36分钟做的,乙和甲的工效比是36:60=3:5。
甲做1/12用了1/12×96=8分钟。
后来用了98-8=90分钟,如果合做90分钟就要完成90÷60=3/2,实际少完成了3/2-(1-1/12)=7/12,说明甲休息这段时间可以做7/12。
这段时间就是乙单独做的,能完成7/12×3/5=7/20。
225. 设A,B,C三人沿同一方向,以一定的速度绕校园一周的时间分别是6、7、11分.由开始点A出发后,B比A晚1分钟出发,C比B晚5分钟出发,那么A,B,C第一次同时通过开始出发的地点是在A出发后几分钟?
从条件可以知道,C出发时,A刚好行了5+1=6分钟,即一圈,也就是说,A和C再次同时经过出发点时,是6×11=66的倍数分钟后。
由于B还需要7-5=2分钟才能通过,说明要满足66的倍数除以7余2分钟。当66×3=198分钟时,198÷7=28……2分钟,满足条件。
因此ABC第一次同时通过出发地点是A出发后6+198=204分钟的时候。
226. 某班同学分成若干组去植树,若每组植树N棵,且N为质数,则剩下树苗20棵,若每组植树9棵,则还缺少2棵,这个班的同学共分成几组?
解:可以看出N是小于9的质数,相差20+2=22。
说明组数是22的约数,9-N也是22的约数。
9-N小于11,所以9-N=2。
所以组数就是22÷2=11组。
227. 学校举行计算机汉字输入技能竞赛,原计划评选出一等奖15人,二等奖20人,现将一等奖中的后5人调整为二等奖,这样一等奖获得者的平均速度提高了8字/分,二等奖获得者平均速度提高了6字/分,那么原来一等奖平均速度比二等奖平均速度多多少?
原来一等奖的平均分比这5人的平均分高8×(15-5)÷5=16字
原来二等奖的平均分比这5人的平均分低6×(20+5)÷5=30字
那么原来一等奖的平均分比二等奖高16+30=46字
228. 红光农场原定9时来车接601班同学去劳动,为了争取时间,8时同学们就从学校步行向农场出发,在途中遇到准时来接他们的汽车,于是乘车去农场,这样比原定时间早到12分钟.汽车每小时行48千米,同学们步行的速度是每小时几千米?
学生步行的路程,汽车需要12÷2=6分钟,说明是在9:00前6分钟接到学生,即8:54分,说明学生行了54分钟。所以汽车的速度是步行的54÷6=9倍,因此步行的速度是每小时行48÷9=16/3千米。
229. 甲、乙两地公路长74千米,8:15一辆汽车从甲地到乙地,半个小时后,又有一辆同样速度的汽车从甲地开往乙地.王叔叔8:25从乙地骑摩托车出发去甲地,在差5分不到9点时,他遇到了第一辆汽车,9:16遇到第二辆汽车,王叔叔骑摩托车的速度是多少?
根据题意,汽车40分和摩托车30分共行74千米,汽车31分和摩托车51分共行74千米。
可以知道汽车40-31=9分钟相当于摩托车51-30=21分钟行的。
可以得到摩托车行完需要40÷9×21+30=370/3分钟。
所以摩托车小时行74÷370/3×60=36千米
230. 在底面边长为60厘米的正方形的一个长方体的容器里,直立着一个长1米,底面为正方形,边长15厘米的四棱柱铁棍.这时容器里的水半米深.现在把铁棍轻轻地向正上方提起24厘米,露出水面的四棱柱切棍浸湿部分长多少厘米?
减少24厘米的铁棍的体积,水面就要下降24×15×15÷(60×60)=1.5厘米。所以露在水面的有1.5+24=25.5厘米。
最简单的数学应用题 篇2
1、独立思考:指着两步计算连除的应用题这样的又该怎么解答呢?看谁的方法多。
2、小组交流:把你的想法说给你们小组的小朋友听;认真别人的不同的法想;小组长作好记录准备汇报。
3、全班交流:刚才每小组的小朋友都非常积极地说自己的想法,且也非常认真地听别的小朋友的不同的想法,每小组肯定都有很好的、很精彩的解法,把你们的想法展示出来吧。
(1)平均每箱装了多少支?
4800÷4=1200(支)
(2)平均每盒装了多少支?
1200÷20=60(支)
综合算式:4800÷4÷20=60(支)
这里学生说这种想法时出示线段图加深理解。
或:(1)一共装了多少盒?
20×4=80(盒)
(2)平均每盒放多少支?
4800÷80=60(支)
综合算式:4800÷(20×4)=60(支)
生选择一种说说想法、同桌互说想法。
小结:刚才做的题目有什么特点:进行了两次平均分。
4、试一试:
学校图书馆买来864本新书,平均放在6个书架上,每上书架有4层。平均每层放多少本?
(1)独立做(用两种方法解答)
(2)交流说说解题思路(个别说、同桌互说)
5、比较、概括:刚才做的这道题目与开始时做的.那道连乘应用题有什么相同与不同之处?
同时出示课题:连除应用题
最简单的数学应用题 篇3
1、甲、乙两框苹果重量之比是4:5,如果从乙中取6千克放入甲,则两框重量之比是5:4,两框共有多少千克?
假设两框共有X千克
(4/9X+6):(5/9X-6)=5:4
2、一个数,如果把它的小数部分扩大3倍就是4.1,如果把它的小数部分扩大9倍便是8.3,这个数是多少?
(1)整数部分+小数部分的3倍=4.1
(2)整数部分+小数部分的9倍=8.3
2式减去1式
(整数部分+小数部分的9倍)-(整数部分+小数部分的3倍)=8.3-4.1
小数部分的6倍=8.3-4.1
小数部分=0.7
整数部分:2
这个数是:2.7
3、有一块铜锌合金,铜与锌重量的比是2:3,现在加入6克锌,共得新合金36克,求新合金内铜与锌重量的比。
铜:(36-6)÷(3+2)×3=18
锌:(36-6)÷(3+2)×2=12
新合金内锌:12+6=18
铜:锌=18:18=1:1
4.操场上有一圆形花坛,在花坛四周每隔2dm摆放一盆花,一共摆了157盆。这个花坛的半径有多少米?
圆形花坛的周长:
2×157=314(分米)
圆形花坛的半径:
314÷3.14÷2=50(分米)
5.运动场的跑道中间是一个长100米,宽40米的长方形,两头是半圆形。为了平整场地,拉来8车黄沙,每车7立方米,要尽量均匀铺在跑道内,你认为应该怎么分配呢?(π取3.14)
运动场的面积:
长方形+圆100×40+3.14×(40÷2)×(40÷2)=5256(平方米)
拉来多少黄沙
7×8=56(立方米)
黄沙均匀铺在跑道内的厚度
56÷5256≈0.01(米)
6.一个等腰三角形的一个底角度数是顶角的二分之一,这个三角形的顶角是多少度?
把一个底角度数看作1份
顶角就是2份
1份:
180÷(1+1+2)=45
顶角就是2份
45×2=90
7.一个圆的周长和直径相加的合适20.7米,这个圆的面积是多少平方米?
周长=3.14×直径
圆的周长和直径相加的和是20.7米
也就是:
3.14×直径+直径=20.7米
直径×(3.14+1)=20.7
直径:20.7÷(3.14+1)=5
半径:5÷2=2.5
面积:3.14×2.5×2.5
8.小明寒假共放了45天,其中三分之一的时间在乡下姥姥家,九分之二的时间外出旅游,剩余的时间休息,学习,请你提出几个问题,并请你提出三个问题,并列式解答。
1:还剩下几分之几的时间休息
1-1/3-2/9
2:还剩下多少时间休息
45÷(1-1/3-2/9)
3:小明寒假外出旅游是多少天
45×2/9
9.寒假开始,红领巾志愿者参加社区劳动。有50%的同学扫楼道,有五分之二的同学运垃圾,在这些同学之中有7人两项都做,占志愿者总数的14%。志愿者共几人?除了扫楼道的和运垃圾的学生外,其他人擦窗户,擦窗户的几人?
在这些同学之中有7人两项都做,占志愿者总数的14%
志愿者总数的14%是7人
志愿者总数:7÷14%=50
志愿者有50%的同学扫楼道
扫楼道同学:50×50%=25
志愿者有五分之二的同学运垃圾
运垃圾同学:50×2/5=20
除了扫楼道的和运垃圾的学生外,其他人擦窗户,擦窗户的几人?
50-25-20+7=12
1.一条路,已修了全长的五分之三,还剩120千米没修.这条路全部有多少千米?
120÷(1-3/5)=300
2.小红看一本小说,第一天看了全书的五分之一,第二天看了全书的四分之一,还剩121页没有看,这本小说共多少页?
最简单的数学应用题 篇4
1、有一根圆柱体钢材长1米,如果把它横截成两段,表面积就增加6.28平方分米,这根圆柱体钢材的表面积是多少平方分米?
2、一节圆柱体的铁皮烟囱长1.2米,直径是0.2米,做这样的烟囱300节,至少要用铁皮多少平方米?
3.六年级一班男生人数是女生人数的7分之6.写出男生人数和全班人数的比。
4.已知甲数除以已数的商是4.25,求甲数与已数的最简整数比.
5.一块6万平方米的森林,一年大约要蒸发4.8万吨水。平均1万平方米森林一年大约蒸发多少万吨水?
6.每平方米阔叶林一天能释放氧气75克,是每平方米草地所释放氧气的5倍。每平方米草地一天能释放氧气多少克?
7.20xx年我国完成造林面积912万公顷,比20xx年增加了135万公顷。20xx年我国完成造林面积多少万公顷?
8.甲、乙两班共有学生99人,如果抽调甲班人数的十分之一去乙班后,那么甲、乙两班人数的比为5:6。这两个班原有人数各是多少?
9.开发区要开辟一片土地,每天平整0.5公顷,60天可以完成任务。现在要求提前10天完成任务,每天要比原来多平整多少公顷?(列方程解)
10.农业银行想把5元的人民币220张,完全换成2角的,可以换多少张?(用两种方法解答)
最简单的数学应用题 篇5
最新小升初数学应用题试卷精选
1. 一台拖拉机5小时耕地40公顷,照这样的速度,耕72公顷地需要几小时?
要求耕72公顷地需要几小时,我们就要先求出这台拖拉机每小时耕地多少公顷?
(1)每小时耕地多少公顷?
405=8(公顷)
(2)需要多少小时?
728=9(小时)
答:耕72公顷地需要9小时。
4. 小华每分拍球25次,小英每分比小华少拍5次。照这样计算,小英5分拍多少次?小华要拍同样多次要用几分?
(1)小英每分拍多少次?
25-5=20(次)
(2)小英5分拍多少次?
205=100(次)
(3)小华要几分拍100次?
10025=4(分)
答:小英5分拍100次,小华要拍同样多次要用4分。
5. 刘老师搬一批书,每次搬15本,搬了12次,正好搬完这批书的一半。剩下的.书每次搬20本,还要几次才能搬完?
(1)12次搬了多少本?
1512=180(本)
搬了的与没搬的正好相等
(2)要几次才能把剩下的搬完?
18020=9(次)
答:还要9次才能搬完。
三. 独立思考(答题时间:15分钟)
1. 在下图中,用16根等长的小棒,摆出5个正方形,移动其中3根,使它成为4个正方形。
2. 商店运来苹果和梨各一吨,5筐苹果的重量和4筐梨的重量相等。每筐苹果重20千克,商店运来苹果和梨各多少筐?每筐梨重多少千克?
2 纺织厂运来一堆煤,如果每天烧煤1500千克,6天可以烧完。如果每天烧1000千克,可以多烧几天?
要想求可以多烧几天,就要先知道这堆煤每天烧1000千克可以烧多少天;而要求每天烧1000千克,可以烧多少天,还要知道这堆煤一共有多少千克。
(1)这堆煤一共有多少千克?
15006=9000(千克)
(2)可以烧多少天?
90001000=9(天)
(3)可以多烧多少天?
9-6=3(天)
二. 合作交流
1. 把7本相同的书摞起来,高42毫米。如果把28本这样的书摞起来,高多少毫米?(用不同的方法解答)
方法1:
(1)每本书多少毫米?
427=6(毫米)
(2)28本书高多少毫米?
628=168(毫米)
方法2:
(1)28本书是7本书的多少倍?
287=4
(2)28本书高多少毫米?
424=168(毫米)
2. 两个车间装配电视机。第一车间每天装配35台,第二车间每天装配37台。照这样计算,这两个车间15天一共可以装配电视机多少台?
方法1:
(1)两个车间一天共装配多少台?
35+37=72(台)
(2)15天共可以装配多少台?
7215=1080(台)
方法2:
(1)第一车间15天装配多少台?
3515=525(台)
(2)第二车间15天装配多少台?
3715=555(台)
(3)两个车间一共可以装配多少台?
555+525=1080(台)
答:15天两个车间一共可以装配1080台。
3. 同学们到车站义务劳动,3个同学擦12块玻璃。(补充不同的条件求问题,编成两道不同的两步计算应用题)。
补充1:照这样计算,9个同学可以擦多少块玻璃?
(1)每个同学可以擦几块玻璃?
123=4(块)
(2)9个同学可以擦多少块?
49=36(块)
答:9个同学可以擦36块。
补充2:照这样计算,要擦40块玻璃,需要几个同学?
(1)每个同学可以擦几块玻璃?
123=4(块)
(2)擦40块需要几个同学?
最简单的数学应用题 篇6
1、原有29个球,借出8个,还剩多少个?
2、借出8个球,还剩21个,原有多少个?
3、买来12个苹果,吃了4个,还剩多少个?
4、吃了4个苹果,还剩8个,原来有多少个?
5、车场里开走了4辆车,还剩15辆。车场里原有多少辆车?
6、草地上的兔子跑了8只后,还剩下40只,原来有兔子多少只?
7、商店卖出汽水32箱,还剩20箱,原有汽水多少箱?
8、水果店卖出苹果76筐,还剩3筐,原有苹果多少筐?
9、小山剪了一些★,贴了31个,还剩下7个。小山剪了几个★?
10、小华看书看了92页,还剩下4页没有看。这本书有多少页?
11、英语小组原来有12个人,今天上课缺席的有2个人,今天上课的有多少人?
12、学校里有8个足球,49个小皮球,小皮球比足球多多少个?
13、商店里有26个小汽球,5个大汽球,大汽球比小汽球少多少个?
14、合唱队有38个女同学,6个男同学,男同学比女同学少多少个?
15、小明养了36只兔,小红养了24只兔,小明比小红多养了多少只?
16、商店里有35盒红汽球,20盒黄汽球,黄汽球比红汽球少多少盒?
17、梨子有5个,苹果有7个,苹果比梨子多多少个?
18、草地上有白兔7只,黑兔4只,白兔比黑兔多多少只?
19、小花8岁,爸爸38岁,爸爸比小花大几岁?
20、美术组有13人,数学组有9人,美术组比数学组多多少人?
21、草地有公鸡7只,母鸡39只,母鸡比公鸡多多少只?公鸡比母鸡少多少只?
22、食堂运回大米28袋,面粉7袋,面粉比大米少多少袋?
23、体操队有18人,游泳队比体操队多11人,游泳队有多少人?
24、水果店卖出26筐苹果后,剩下的比卖出的多9筐。剩下多少筐苹果?
25、小华有25本故事书,小方比他多11本。小方有多少本?
26、六月卖出冰箱58台,七月比六月多卖出22台。七月卖出多少台?
27、小花今年8岁,爸爸比她大29岁。爸爸今年多少岁?
28、有5个草莓,樱桃比草莓多3个,樱桃有几个?
29、小花捡了25个贝壳,小明比小花多捡了4个,小明捡了多少个贝壳?
30、数学组有9人,美术组比数学组多8人,美术组有多少人?
31、食堂运回大米28袋,面粉比大米多7袋,面粉有多少袋?
32、小明养了36只兔,小红比小明多养了3只,小红养了多少只兔?
33、商店里有35盒红汽球,黄汽球比红汽球多10盒,黄汽球有多少盒?
34、25比12多多少?
35、比32多20的数是多少?
36、一个加数是28,另一个加数比它大10,另一个加数是多少?
37、一个数比60多30,这个数是多少?
38、38比8多多少?
39、一个数是26,另一个数是58,和是多少?
40、29比7多多少?
41、比49多20的数是多少?
42、一个数比26多8,这个数是多少?
43、第一个加数是58,第二个加数是89,第一个加数比第二个加数少多少?
44、被减数是69,减数是39,被减数比减数多多少?
45、比29多29的数是多少?
46、54与67的差是多少?
47、5与38的和是多少?
48、比最大的两位数多1的数是多少?
49、一个数是5,另一个数是38,这两个数相差多少?
50、一个加数是35,另一个加数比它多7,另一个加数是多少?
最简单的数学应用题 篇7
1、李红早晨7点从家出发去学校,她走了2分钟后发现忘带语文书了,她立刻回家拿了书又立即往学校赶,这样她到校时是7点20分。如果她每分钟走80米,李红家离学校有多远?
2、一辆货车从甲城往乙城运货,每小时行42千米,预计6小时到达。但行到一半时,由于机器出了故障,用了1小时进行修理,如果仍要求在预计时间到达乙地,余下的路程必须每小时行多少千米?
3、一辆卡车上午10时从南京出发开往浙江,原计划每小时行驶60千米,下午1时到达,但实际晚点2小时。这辆汽车实际每小时行驶多少千米?
4、明明家离学校有200米,他走了4分钟,如果用同样的速度,从学校到少年宫明明走了12分钟。学校到少年宫有多少米?
5、小李骑摩托车以每分钟650米的速度从甲村到乙村去办事,他骑出5分钟后,因忘记带东西立即返回去拿,然后又立即出发去乙村,这样他一共用了25分钟才到达乙村。两个村相距有多少米?
6、一列火车早上5时从甲地开往乙地,下午1时可以到达。开汽车从甲地到乙地要多用2小时,如果汽车每小时行52千米,甲乙两地相距多少千米?
7、张青平时都用每分钟66米的速度从家出发去上学,这样他10分钟就能到学校。有一天他走到一半时,遇到一个熟人讲了2分钟话,如果他仍要按时到校,余下的路程每分钟要走多少米?
8、小明和小红的家在同一条大街的两头。如果小明每分钟走40米,小红每分钟走30米,他们两人约好同时出发,相向而行,经过3分钟两人相遇。他们两家相距多远?
9、一列客车和一列火车分别从两座城市同时出发,相向而行,客车每小时行45千米,火车每小时行35千米,经过8小时,两车在途中相遇。求:两座城市相距多远?
10、一架飞机以每小时420千米的速度从A城出发,飞向B城。一小时后,另一架飞机以每小时小时460千米的速度从B城飞往A城,经过3小时遇到从A城飞来的飞机。AB两城相距多少千米?
11、小红和小明从相距1500米的两地同时出发,相向而行,小红每分钟走55米,小明每分钟比小红多行15米。经过10分钟后,两人相遇了吗?
12、敌舰在我军舰前面以每分钟120米的速度逃跑,我军舰以每分钟180米的速度在后面追,20分钟后追上敌舰。问:一开始敌舰在我军舰前多少米?
13、敌舰在我军舰前1500米处逃跑,我军舰在后面追。敌舰每分钟行150米,我军舰每分钟行180米,多少分钟才能追上?
14、小丽和小张都从东村往西村走,小丽用每分钟120米的速度先走了5分钟后,小张才用每分钟150的速度出发,结果两人同时到达。东西两村相距多远?
15、小红和小明都从甲村到乙村去办事,小红以每分120米的速度先走了一会,小明以每分140米的速度在后面追,用5分钟就追上了。小红先走了多少米?
16、甲飞机每小时飞行400千米,乙飞机每小时飞行430千米。它们同时从A城飞往B城,4小时后它们相隔多少千米?
17、一辆卡车在一辆轿车前52千米处以每小时36千米的速度开往甲地。这辆轿车每小时行40千米,多少小时后才能追上卡车?
22、夜行军时,甲队同学由于帮助受伤的同学,落在了乙队同学后面150米,乙队同学仍以每分钟80米的速度前进。老师要求甲队同学以每分钟110米的速度跑步追及,几分钟可以追上乙队?
23、一辆汽车以每小时30千米的速度从甲地开往乙地,开出4小时后,一列火车以每小时90千米的速度从甲地开往乙地,结果同时到达。甲乙两地相距多远?
24、上海路小学有一个300米的环形跑道。洋洋和宁宁同时从起跑线起跑,洋洋每秒跑6米,宁宁每秒跑4米,多少秒后洋洋能追上宁宁?这时两人各跑了多少米?
最简单的数学应用题 篇8
1、把一个体积为80立方厘米的铁块浸在底面积为20平方厘米的长方体容器中,水面高度为10厘米,如果把铁块捞出后,水面高多少?
2、要制作12节长方体的铁皮烟囱,每节长2米,宽4分米,高3分米,至少要用多少平方米的铁皮?
宽3米,铺设了2厘米厚的木地板,至少需要木材多少立方米?
宽1.8米,装的煤高0.6米,平均每立方米煤重1.5吨,这辆车装的煤有多少吨?
5、一种无盖的长方体形铁皮水桶,底面是边长4分米的正方形,高1米。做一只这样的水桶至少要多少铁皮?这只水桶能装水多少升?
宽7.5米的直跑道上。煤渣可以铺多厚?
宽14米,深1.2米。现在要在四壁和池底贴上面积为16平方分米的正方形瓷砖,需要多少块?
8、一个长方体的容器,底面积是16平方分米,装的水高6分米,现放入一个体积是24立方分米的铁块。这时的水面高多少?
9、一块长方形铁皮,长32厘米,在它四个顶角分别剪去边长4厘米的正方形,然后折起来焊成一个无盖的长方体铁皮盒。已知这个铁皮盒的容积是768立方厘米。原来这块铁皮的面积是多少?
一个长方体玻璃缸,底面积是200平方厘米,高8厘米,里面盛有4厘米深的水,现在将一块石头放入水中,水面升高2厘米。这块石头的体积是多少立方厘米?
一个长方体,长4米,宽3米,高2.4米,它的占地面积最大是多少平方米?表面积是多少平方米?体积是多少立方米?
有一块棱长是80厘米的正方体的铁块,现在要把它溶铸成一个横截面积是20平方厘米的长方体,这个长方体的长是多少厘米?
一块正方体的石头,棱长是5分米,每立方米的石头大约重2.7千克,这块石头重有多少千克?
【附】《体积与容积》教学设计
教材分析:
1、通过具体的`实验活动,了解体积和容积的实际意义,初步理解体积和容积的概念。
2、体积与容积的学习是在学生认识了长方体和正方体的特点以及长方体和正方体的表面积的基础上进行的。这一内容是进一步学习体积的计算方法等知识的基础,也是发展学生空间观念的重要载体。但体积和容积又是学生比较容易混淆的两个概念。
学情分析:
数学教学活动必须建立在学生的认知发展水平和已有的知识经验基础上。对于概念教学,比较抽象,难于理解。学生们有着丰富的生活经验,从他们身边的事物出发,把概念变得形象化、具体化,学生会更容易接受。本课的重点是初步理解体积和容积的概念。体积的概念是物体所占空间的大小。
教学目标:
知识与技能目标:通过具体的实验活动,了解体积和容积的实际意义,初步理解体积和容积的概念。
过程与方法目标:在操作、交流中,感受物体体积的大小、发展空间观念。
情感、态度和价值观目标:增强合作精神和喜爱数学的情感。
现代教学手段:使用多媒体课件,使抽象变直观,发挥现代教育手段的优势。
教学重点和难点
教学重点:通过具体的实验活动,初步理解体积和容积的概念。
教学难点:理解体积和容积的联系和区别。
教学过程:
(一)情境导入:
师:今天老师和同学们一起来探究《体积与容积》这一课。
师:同学们,你们知道乌鸦喝水的故事吗?为什么乌鸦最后能喝到水呢?谁能把这个故事讲给大家听?(生自由发言)
(1)认识体积
1、初步感受空间。
师:老师往水里放一个苹果,苹果占空间吗?放一枚硬币,硬币占空间吗?橡皮占空间吗?铅笔盒占空间吗?桌子呢?凳子呢?还有什么东西占空间?
师:是不是所有的东西都占空间?在水里占空间,拿出来呢?(也占空间)板书:空间。
2、空间也有大小。
师:橡皮与铅笔盒比谁占得空间大,谁占得空间小?桌子与凳子呢?板书:大小
3、体积的概念。
老师叫一位学生上台,问:“你有体积吗?老师有体积吗?谁的体积大?”请这位同学变换位置,站在教室的不同地方,问:“它的体积变了吗?他的什么变了?说明了什么?”(物体的位置变化了,但体积不变)
师:“橡皮泥是什么形状的?(长方体。)把橡皮泥捏成球体,同时问:“它这时是什么形状?(球体)它的体积变了吗?他的什么变了?(形状)说明了什么?(物体的形状变化了,但体积不变。)生活中你见到过这样的事情吗?(生:妈妈把一团面擀成一个薄饼。生:奶奶把一个黄瓜切成了一片片的。)
(2)认识容积
1、出示:饮料瓶,水杯,茶叶罐。
师:请迅速给这三个物体按体积由大到小的顺序排一排。
2、认识容器。
师:他们是用来干什么的?(学生
最简单的数学应用题 篇9
关于小升初数学应用题公式集锦
小升初数学应用题各类型公式集锦,包括植树问题、盈亏问题、相遇问题、追及问题、流水问题、浓度问题、利润与折扣问题公式。
植树问题 :
1. 非封闭线路上的植树问题主要可分为以下三种情形:
⑴如果在非封闭线路的两端都要植树,那么:
株数=段数+1=全长÷株距-1
全长=株距×(株数-1)
株距=全长÷(株数-1)
⑵如果在非封闭线路的一端要植树,另一端不要植树,那么:
株数=段数=全长÷株距
全长=株距×株数
株距=全长÷株数
⑶如果在非封闭线路的两端都不要植树,那么:
株数=段数-1=全长÷株距-1
全长=株距×(株数+1)
株距=全长÷(株数+1)
2. 封闭线路上的植树问题的'数量关系如下
株数=段数=全长÷株距
全长=株距×株数
株距=全长÷株数
盈亏问题 :
(盈+亏)÷两次分配量之差=参加分配的份数
(大盈-小盈)÷两次分配量之差=参加分配的份数
(大亏-小亏)÷两次分配量之差=参加分配的份数
相遇问题 :
相遇路程=速度和×相遇时间
相遇时间=相遇路程÷速度和
速度和=相遇路程÷相遇时间
追及问题 :
追及距离=速度差×追及时间
追及时间=追及距离÷速度差
速度差=追及距离÷追及时间
流水问题 :
顺流速度=静水速度+水流速度
逆流速度=静水速度-水流速度
静水速度=(顺流速度+逆流速度)÷2
水流速度=(顺流速度-逆流速度)÷2
浓度问题 :
溶质的重量+溶剂的重量=溶液的重量
溶质的重量÷溶液的重量×100%=浓度
溶液的重量×浓度=溶质的重量
溶质的重量÷浓度=溶液的重量
利润与折扣问题:
利润=售出价-成本
利润率=利润÷成本×100%=(售出价÷成本-1)×100%
涨跌金额=本金×涨跌百分比
折扣=实际售价÷原售价×100%(折扣<1)
利息=本金×利率×时间
最简单的数学应用题 篇10
例1:
自行车和汽车共有 ,自行车和汽车各有几辆?
假设一:
假设 24 辆车都是汽车,那么按每辆汽车 4 只轮胎计算,轮胎只数应为
,怎么会多算 42 只轮胎,这是由于假定自行车的辆数,把它当作汽车来计算。
每辆自行车是 ÷(=42÷2
=
自行车有 21 辆,而自行车和汽车总计是 24 辆,减法计算,可得汽车的 辆数:
答:自行车有 21 辆,汽车有 3 辆。 假设二:
假设 。这比题中 的“,怎么会少算 6 只轮胎,这是由于假 定汽车的辆数当作自行车来计算。每辆汽车少算 2 只轮胎,那么少算 6 只轮 胎,就可求出有几辆汽车算作自行车。据此,
列式计算(÷(
=6÷2
=
既知汽车有 3 辆,汽车和自行车总计 24 辆,减法计算,可得自行车辆数
例2:
某农机厂制造一批农具,原计划 18 天完成,实际每天比计划多制造 50 件,照这样做了 12 天,就超过原计划产量 240 件,这批农具原计划制造多少 件?
分析:
这道题要求原计划制造多少件,不是从题目的条件来看,既不知道原计 划每天制造多少件,也不知道实际每天制造多少件,所以要想按照一般的数 量关系,通过分析来寻找解题线索,是一个比较困难的问题,在这种情况下, 可以用假设法来解答。
题目告诉我们,“原计划 18 天完成”我们就假设实际生产了 18 天。那 么,按照题目的条件“实际每天比计划多制造 50 件”来计算的话,应该比原 计划产量多制造:
根据题意,制造 。制造的 件数相差了 ,这就是说,按实际每天制造的件数计算,6 天可以制造农具 660 件,我们可以从这两个相差数中,算出实际每天制造的 件数是:
通过假设,找到了解开这道题目的一个重要条件,即实际每天制造 ,因为 12 天制造的件数比原计划产量多 240 件,所以原计划制造的件数就是:
列综合式计算:(÷(×12-240
=660÷6×12-240
=1320-240
= 答:原计划制造农具 1080 件。
当求出了实际每天制造 110 件之后,下一步也可以这样思考: 根据已知条件“实际每天比计划多制造 50 件”,可求得原计划每天制造的件数:
。
再根据已知条件“原计划 18 天完成”即可求得原计划制造的件数:
列综合式计算[(÷(-50]×18
=[660÷6-50]×18
=60×18
= 答:略。
由上例看出用假设法求出实际每天制造的件数,是解这道题的关键。
例3:
勤风印刷厂,装订车间有 40 个工人,每分钟每个男工装订 3 本书,每个 女工装订 1.5 本书,男女工人 5 分钟一共装订了 435 本书。问男女工人各装 订多少本?
假设一:
假设每个女工每分钟装订本数和男工一样多,每分钟也装订 。
由题中所给条件“男女工人 。由此看出,假设每个女工每分钟装订本数和男工一样 多,要比实际多出 ,而每个女工每分钟装订本数比实际多算
。那么,多少个女工多算了 ÷(
=(÷1.5
=33÷1.5
=
全车间一共是 40 人,女工有 22 人,可用减法计算,可得出男工人数:
每个男工每分钟装订 3 本,18 个男工 5 分钟装订的本数是:
每个女工每分钟装订 1.5 本,22 个女工 5 分钟装订的本数是:
答:男工装订 270 本,女工装订 165 本。 假设二:
假设每个男工每分钟装订本数和每个女工一样多,每分钟装订 比题中说的每分钟装 订 少 。
由于假设,每个男工装订本数比实际少算了 ,那么,多 少个男工少算 ÷
(
=(÷1.5
=27÷1.5
=。
女工人数:
以下解答步骤和假设一相同,由此从略。
有一种古老的典型算术题,叫做鸡兔同笼问题,不知道你听说过没有? 这是一道有趣的题目,是用假设法解答的。如:
例4:
鸡兔同笼,共有头 34 只,脚 118 只,鸡兔各有几只?
假设一:
假设笼里装的全部是兔子,由于每只兔有 =136 只脚,比实际的 118 只脚多了 18 只脚,因每只兔比每只鸡多2 只脚,就可以求出鸡的只数。
(÷(
=18÷2
=。 兔子的只数:
答:鸡有 9 只,兔子有 25 只。
假设二:
假设笼里装的全部是鸡,由于每只鸡有 =68 只脚,比实际的 118 只脚少了 50 只脚,因每只鸡比每只兔少 2 只 脚,就可以先求出兔子的只数:
(÷(
=50÷2
= 鸡的只数:
答:鸡有 9 只,兔子有 25 只
例5:
一列快车从甲地到乙地要用 10 小时,一列慢车从乙地到甲地要用 15 小 时,每小时快车比慢车多行 12 公里,两车同时从两地相向而行,几小时相遇? 相遇时,快车和慢车各行多少公里?
假设一:
假设快车和慢车同时从甲地出发到乙地,都行 10 小时,题中条件指出: 快车从甲地到乙地要 10 小时;慢车行全程为 15 小时,所以当我们假设两车 同时从甲地开出 10 小时后,快车到达了乙地,而慢车还在途中:
由于每小时快车比慢车多行 ,快车到达乙地,慢车还要行 5 小时,才能到 达乙地,即还要行 120 公里。据此,可以推算出慢车的速度:
=120÷5
=
知道了慢车每小时行 24 公里,又知道快车每小时比慢车多行 12 公里, 就可用加法计算出快车的速度:
知道了快车每小时行 36 公里,又知道从甲地到乙地要行 10 小时,用乘 法计算可得全程是:
。 用慢车速度也可以求出全程:
现在,我们再来按“两车同时从两地相向而行”来考虑多少小时相遇。 由“路程÷速度和=相遇时间”可得:
=。
快车和慢车 6 小时可以相遇;相遇时,快车和慢车各行多少公里?由:
“速度×时间”可得:
答:快车和慢车 6 小时相遇;相遇时,快车行了 216 公里,慢车行了 144 公里。
最简单的数学应用题 篇11
1.小熊捡了9个玉米,小猴捡的是小熊的4倍,他们一共捡了多少个玉米?
2. 食品店有85听可乐,上午卖了46听,下午卖了30听,还剩多少听?
3. 操场上原有16个同学,又来了14个。这些同学每5个一组做游戏,可以分成多少组?
4、超市里买4袋饼干要付8元,买8袋饼干要付多少元?
5、老师有8袋乒乓球,每袋6个,借给同学15个,还剩多少个?
6. 一小桶牛奶5元钱,一大桶牛奶是一小桶的4倍,买一大一小两桶牛奶共需要多少钱?
7、三个小队一共捉了42条虫子,第一队捉了18条,第二队捉了16条。第三小队捉了多少条虫子?
8. 王老师在文具店买了5张绿卡纸,15张红卡纸。红卡纸是绿卡纸的多少倍?
9. 二年级一班有20名男生,22名女生,平均分成6个小组,每组有几名同学?
10、一辆空调车上有42人,中途下车8人,又上来16人,现在车上有多少人?
11、红领巾养鸡场有公鸡44只,母鸡比公鸡多16只。母鸡有多少只?
12、红领巾养鸡场有母鸡60只,母鸡比公鸡多14只,公鸡有多少只?
13、小白兔有72只,小狗有9只,小白兔的只数是小狗的几倍?
14、56个桃子平均分给7只小猴,每只小猴分几个?
15、商店有自行车60辆,卖了4天,每天卖8辆,还剩多少辆?
16、 有25个苹果,梨比苹果少7个,有多少个梨?
17、花丛中有蜻蜓和蝴蝶共35只,飞走了6只,又飞来了12只。现在花丛中蜻蜓和蝴蝶有多少只?
18、停车场有卡车35辆,有轿车24辆。开走了17辆,现在有多少辆车?
19、小明做了18面绿旗,又做了32面红旗。送给幼儿园14面,小明现在还有多少面?
20、面包师傅做了54个面包,小明买走了19个,小红买走了25。你还可以买几个?
参考答案
1. 45
2. 9
3. 6
4. 16
5. 33
6. 25
7. 8
8. 3
9. 7
10. 50
11. 60
12. 46
13. 8
14. 8
15. 28
16. 18
17. 41
18. 42
19. 36
20. 10