1、把一个体积为80立方厘米的铁块浸在底面积为20平方厘米的长方体容器中,水面高度为10厘米,如果把铁块捞出后,水面高多少?2、要制作12节长方体的铁皮烟囱,每节长2米,宽4分米,高3分米,至少要用多少平方米的铁皮?宽3米,铺设了2厘米厚的木地板,至少需要木材多少立方米?宽1.8米,装的煤高0.6米...

活动范文 > 试题 > 导航 > 最简单的数学应用题10篇

最简单的数学应用题

2024-01-26

相关推荐

最简单的数学应用题10篇。

最简单的数学应用题 篇1

1、把一个体积为80立方厘米的铁块浸在底面积为20平方厘米的长方体容器中,水面高度为10厘米,如果把铁块捞出后,水面高多少?

2、要制作12节长方体的铁皮烟囱,每节长2米,宽4分米,高3分米,至少要用多少平方米的铁皮?

宽3米,铺设了2厘米厚的木地板,至少需要木材多少立方米?

宽1.8米,装的煤高0.6米,平均每立方米煤重1.5吨,这辆车装的煤有多少吨?

5、一种无盖的长方体形铁皮水桶,底面是边长4分米的正方形,高1米。做一只这样的水桶至少要多少铁皮?这只水桶能装水多少升?

宽7.5米的直跑道上。煤渣可以铺多厚?

宽14米,深1.2米。现在要在四壁和池底贴上面积为16平方分米的正方形瓷砖,需要多少块?

8、一个长方体的容器,底面积是16平方分米,装的水高6分米,现放入一个体积是24立方分米的铁块。这时的水面高多少?

9、一块长方形铁皮,长32厘米,在它四个顶角分别剪去边长4厘米的正方形,然后折起来焊成一个无盖的长方体铁皮盒。已知这个铁皮盒的容积是768立方厘米。原来这块铁皮的面积是多少?

一个长方体玻璃缸,底面积是200平方厘米,高8厘米,里面盛有4厘米深的水,现在将一块石头放入水中,水面升高2厘米。这块石头的体积是多少立方厘米?

一个长方体,长4米,宽3米,高2.4米,它的占地面积最大是多少平方米?表面积是多少平方米?体积是多少立方米?

有一块棱长是80厘米的正方体的铁块,现在要把它溶铸成一个横截面积是20平方厘米的长方体,这个长方体的长是多少厘米?

一块正方体的石头,棱长是5分米,每立方米的石头大约重2.7千克,这块石头重有多少千克?

【附】《体积与容积》教学设计

教材分析:

1、通过具体的`实验活动,了解体积和容积的实际意义,初步理解体积和容积的概念。

2、体积与容积的学习是在学生认识了长方体和正方体的特点以及长方体和正方体的表面积的基础上进行的。这一内容是进一步学习体积的计算方法等知识的基础,也是发展学生空间观念的重要载体。但体积和容积又是学生比较容易混淆的两个概念。

学情分析:

数学教学活动必须建立在学生的认知发展水平和已有的知识经验基础上。对于概念教学,比较抽象,难于理解。学生们有着丰富的生活经验,从他们身边的事物出发,把概念变得形象化、具体化,学生会更容易接受。本课的重点是初步理解体积和容积的概念。体积的概念是物体所占空间的大小。

教学目标:

知识与技能目标:通过具体的实验活动,了解体积和容积的实际意义,初步理解体积和容积的概念。

过程与方法目标:在操作、交流中,感受物体体积的大小、发展空间观念。

情感、态度和价值观目标:增强合作精神和喜爱数学的情感。

现代教学手段:使用多媒体课件,使抽象变直观,发挥现代教育手段的优势。

教学重点和难点

教学重点:通过具体的实验活动,初步理解体积和容积的概念。

教学难点:理解体积和容积的联系和区别。

教学过程:

(一)情境导入:

师:今天老师和同学们一起来探究《体积与容积》这一课。

师:同学们,你们知道乌鸦喝水的故事吗?为什么乌鸦最后能喝到水呢?谁能把这个故事讲给大家听?(生自由发言)

(1)认识体积

1、初步感受空间。

师:老师往水里放一个苹果,苹果占空间吗?放一枚硬币,硬币占空间吗?橡皮占空间吗?铅笔盒占空间吗?桌子呢?凳子呢?还有什么东西占空间?

师:是不是所有的东西都占空间?在水里占空间,拿出来呢?(也占空间)板书:空间。

2、空间也有大小。

师:橡皮与铅笔盒比谁占得空间大,谁占得空间小?桌子与凳子呢?板书:大小

3、体积的概念。

老师叫一位学生上台,问:“你有体积吗?老师有体积吗?谁的体积大?”请这位同学变换位置,站在教室的不同地方,问:“它的体积变了吗?他的什么变了?说明了什么?”(物体的位置变化了,但体积不变)

师:“橡皮泥是什么形状的?(长方体。)把橡皮泥捏成球体,同时问:“它这时是什么形状?(球体)它的体积变了吗?他的什么变了?(形状)说明了什么?(物体的形状变化了,但体积不变。)生活中你见到过这样的事情吗?(生:妈妈把一团面擀成一个薄饼。生:奶奶把一个黄瓜切成了一片片的。)

(2)认识容积

1、出示:饮料瓶,水杯,茶叶罐。

师:请迅速给这三个物体按体积由大到小的顺序排一排。

2、认识容器。

师:他们是用来干什么的?(学生

最简单的数学应用题 篇2

1、李老师带有60元钱,正好买一个足球和两个排球。如果只买两个排球,还剩28元。一个足球多少钱?一个排球多少钱?

2、14个同学站成一队做操,从前面数张兵是第6个,从后数他是第几个?

3、有两篮苹果,第一篮25个,第二篮19个,从第一篮中拿几个放入第二篮,两篮的苹果数相等?

4、小花今年6岁,爸爸对小花说:"你长到10岁的时候,我正好40岁。"爸爸今年多少岁?

5、一辆公共汽从东站开到西站,开一趟。如果这辆车从东站出发,开了11趟之后,这辆车在东站还是西站?

6、王老师领男女学生个10名去看电影,要买几张电影票。

7、12辆摩托车组成一列向前开,从前往后数,银色摩托车是第8辆,问:从后往前数,它是第几辆?

8、小文今年10岁,比妈妈小29岁。去年他比妈妈小几岁?

9、妈妈买回一些鸭蛋和12个鸡蛋,吃了8个鸡蛋后,剩下的鸡蛋和鸭蛋同样多,问妈妈买回的鸭蛋是几个?

10、一只猫吃一只老鼠用5分钟吃完,5只猫同时吃5只同样大小的老鼠,需要几分钟才能吃完?

最简单的数学应用题 篇3

1. 有若干个自然数,它们的算术平均数是10,如果从这些数中去掉最大的一个,则余下的算术平均数为9;如果去掉最小的一个,则余下的算术平均数为11,这些数最多有多少个?这些数中最大的数最大值是几?

解:根据新课标教材,0是最小的自然数。

由于去掉最小数后,算术平均数是11,

所以,这些数最多有10÷(11-10)+1=11个。

所以,最大的数最大值是11-1+10=20

2. 某班有少先队员35人,这个班有男生23人,这个班女生少先队员比男生非少先队员多几人?

解:

方法一

如果这23个男生都是少先队员,那么女生少先队员就有35-23=12人,男生非少先队员就没有了,所以就多12人。

方法二

如果这23个男生都不是少先队员,那么女生少先队员就有35人,那么女生少先队员就比男生非少先队员多35-23=12人。

方法三

女生少先队员-男生非少先队员

=(女生少先队员+男生少先队员)-(男生非少先队员+男生少先队员)

=少先队员-男生

=35-23

=12人。

3. 小东计划到周口店参观猿人遗址.如果他坐汽车以40千米/小时的速度行驶,那么比骑车去早到3小时,如果他以8千米/小时的速度步行去,那么比骑车晚到5小时,小东的出发点到周口店有多少千米?

解:

说明坐汽车比步行少用3+5=8小时,

这8小时内,步行要行8×8=64千米。

坐汽车每小时要比步行多行40-8=32千米。

坐汽车64÷32=2小时,就可以多行这么多了。

所以,从出发点到周口店有40×2=80千米。

又想到一个解法:

汽车速度是步行速度的40÷8=5倍

那么汽车行完全程的时间是(3+5)÷(5-1)=2小时

所以从出发点到周口店有40×2=80千米

所以从出发点到周口店有40×2=80千米

40/8=5 (5+3)*40=320 320/(5-1)=80

4. 甲、乙两船在相距90千米的河上航行,如果相向而行,3小时相遇,如果同向而行则15小时甲船追上乙船.求在静水中甲、乙两船的速度.

两船速度和:90÷3=30(千米)

两船速度差:90÷15=6(千米)

乙船的速度:(30-6)÷2=12(千米/小时)

甲船的速度:12+6==18(千米/小时)

答:甲船的速度是18千米/小时,乙船的速度是12千米/小时.

5. 二年级两个班共有学生90人,其中少先队员有71人,一班少先队员占本班人数的75%,二班少先队员占本班人数的5/6.一班少先队员人数比二班少先队员人数多几人?

解:一班人数:(5/6x90-71)/(5/6-75%)=48(人)

一班少先队员人数比二班少先队员多的人数:75%x48-5/6x(90-48)=1(人)

解:

假设两个班的少先队员都占本班人数的5/6,

那么少先队员人数就占两班总人数的5/6,即90×5/6=75人。

比实际多了75-71=4人。

所以一班有少先队员4÷(5/6-75%)=48人,二班有90-48=42人。

那么一班比二班多48×75%-42×5/6=1人

6. 一个容器中已注满水,有大、中、小三个球.第一次把小球沉入水中,第二次把小球取出,把中球沉入水中,第三次把中球取出,把小球和大球一起沉入水中,现知道每次从容器中溢出水量的情况是:第一次是第二次的1/2,第三次是第二次的1.5倍.求三个球的体积之比.

解:

第一次溢出的水是小球的体积,假设为1

第二次溢出的水是中球的体积-小球的体积

第三次溢出的水是大球的体积+小球的体积-中球的体积

第一次是第二次的1/2,所以中球的体积为1+2=3

第三次是第二次的1.5倍,第二次是2;所以大球的体积为3-1+3=5

V小球:V中球:V大球=1:3:5

7. 某人翻越一座山用了2小时,返回用了2.5小时,他上山的速度是3000米/小时,下山的速度是4500米/小时.问翻越这座山要走多少米?

解:

往返共用去2+2.5=4.5小时。

所有上坡用的时间和所有下坡用的时间比是4500:3000=3:2。

所有上坡用的时间是4.5÷(3+2)×3=2.7小时,

所以翻越这座山要走的路程就相当于所有的山坡路,即3000×2.7=8100米

解:上山的速度是3000米/小时,所以走每一米需要时间1/3000小时

下山的速度是4500米/小时,所以走每一米需要时间1/4500小时

上山走的总路程=下山走的总路程=全程

相当于用3000米/小时和4500米/小时的速度和(2+2.5)小时走了 2个全程(一个全程上山和一个全程下山)

(2+2.5)÷(1/3000+1/4500)=8100米

8. 钢筋原材料每根长7.3米,每套钢筋架子用长2.4米、2.1米和1.5米的钢筋各一段.现需要绑好钢筋架子100套,至少要用去原材料多少根?

解:

2.1×2+1.5×2=7.2米,用100÷2=50根原材料。

2.4×3=7.2米,用100÷3=33根……1段原材料。

最后的这一段也要用1根原材料。

所以共用去50+33+1=84根原材料。

9. 有一块铜锌合金,其中铜和锌的比2:3.现知道再加入6克锌,熔化后共得新合金36克,新合金中铜和锌的比是多少?

解法一:

加入的6克锌相当于新合金的6÷36=1/6。

原来的合金是新合金是1-1/6=5/6。

铜没有变,占新合金的5/6÷(2+3)×2=1/3,

新合金中的锌占1-1/3=2/3。

所以新合金中的铜和锌的比是1/3:2/3=1:2

解法二:

原来的合金重36-6=30(克)

原来的合金每份重30÷(2+3)=6(克)

含铜6×2=12(克) ,含锌6×3=18(克)

新合金中的合金比12÷(18+6)=1/2,即铜:锌=1:2

10. 小明通常总是步行上学,有一天他想锻炼身体,前1/3路程快跑,速度是步行速度的4倍,后一段的路程慢跑,速度是步行速度的2倍.这样小明比平时早35分到校,小明步行上学需要多少分钟?

解:

行1/3的路程,速度是步行的4倍,

说明用的时间是原来总时间的1/3÷4=1/12。

行余下的1-1/3=2/3的路程,速度是步行的2倍,

说明用的时间是原来总时间的2/3÷2=1/3。

所以这35分钟相当于平时总时间的1-1/3-1/12=7/12

所以小明步行上学需要35÷7/12=60分钟。

解:

35÷(4+2+1)=5(分钟)

5×4÷3/1=60(分钟)

答:小明步行上学需要60分钟.

最简单的数学应用题 篇4

最新小升初数学应用题试卷精选

1. 一台拖拉机5小时耕地40公顷,照这样的速度,耕72公顷地需要几小时?

要求耕72公顷地需要几小时,我们就要先求出这台拖拉机每小时耕地多少公顷?

(1)每小时耕地多少公顷?

405=8(公顷)

(2)需要多少小时?

728=9(小时)

答:耕72公顷地需要9小时。

4. 小华每分拍球25次,小英每分比小华少拍5次。照这样计算,小英5分拍多少次?小华要拍同样多次要用几分?

(1)小英每分拍多少次?

25-5=20(次)

(2)小英5分拍多少次?

205=100(次)

(3)小华要几分拍100次?

10025=4(分)

答:小英5分拍100次,小华要拍同样多次要用4分。

5. 刘老师搬一批书,每次搬15本,搬了12次,正好搬完这批书的一半。剩下的.书每次搬20本,还要几次才能搬完?

(1)12次搬了多少本?

1512=180(本)

搬了的与没搬的正好相等

(2)要几次才能把剩下的搬完?

18020=9(次)

答:还要9次才能搬完。

三. 独立思考(答题时间:15分钟)

1. 在下图中,用16根等长的小棒,摆出5个正方形,移动其中3根,使它成为4个正方形。

2. 商店运来苹果和梨各一吨,5筐苹果的重量和4筐梨的重量相等。每筐苹果重20千克,商店运来苹果和梨各多少筐?每筐梨重多少千克?

2 纺织厂运来一堆煤,如果每天烧煤1500千克,6天可以烧完。如果每天烧1000千克,可以多烧几天?

要想求可以多烧几天,就要先知道这堆煤每天烧1000千克可以烧多少天;而要求每天烧1000千克,可以烧多少天,还要知道这堆煤一共有多少千克。

(1)这堆煤一共有多少千克?

15006=9000(千克)

(2)可以烧多少天?

90001000=9(天)

(3)可以多烧多少天?

9-6=3(天)

二. 合作交流

1. 把7本相同的书摞起来,高42毫米。如果把28本这样的书摞起来,高多少毫米?(用不同的方法解答)

方法1:

(1)每本书多少毫米?

427=6(毫米)

(2)28本书高多少毫米?

628=168(毫米)

方法2:

(1)28本书是7本书的多少倍?

287=4

(2)28本书高多少毫米?

424=168(毫米)

2. 两个车间装配电视机。第一车间每天装配35台,第二车间每天装配37台。照这样计算,这两个车间15天一共可以装配电视机多少台?

方法1:

(1)两个车间一天共装配多少台?

35+37=72(台)

(2)15天共可以装配多少台?

7215=1080(台)

方法2:

(1)第一车间15天装配多少台?

3515=525(台)

(2)第二车间15天装配多少台?

3715=555(台)

(3)两个车间一共可以装配多少台?

555+525=1080(台)

答:15天两个车间一共可以装配1080台。

3. 同学们到车站义务劳动,3个同学擦12块玻璃。(补充不同的条件求问题,编成两道不同的两步计算应用题)。

补充1:照这样计算,9个同学可以擦多少块玻璃?

(1)每个同学可以擦几块玻璃?

123=4(块)

(2)9个同学可以擦多少块?

49=36(块)

答:9个同学可以擦36块。

补充2:照这样计算,要擦40块玻璃,需要几个同学?

(1)每个同学可以擦几块玻璃?

123=4(块)

(2)擦40块需要几个同学?

最简单的数学应用题 篇5

对于备战小升初的同学来说,复习的好坏对小升初考试成绩的高低起着很大的影响。为此数学网小升初频道为大家提供小升初数学应用题:订购商品,希望能够真正的帮助到家长和小学生们!

张先生向商店订购某种商品80件,每件定价100元.张先生向商店经理说:“如果你肯减价,每减价1元,我就多订购4件.”商品店经理算了一下,如果减价5%,由于张先生多订购,仍可获得与原来一样多的利润.问这种商品的成本是多少元?

解法一:减价100×5%=5元,多订购5×4=20件,共订购80+20=100件。

由于利润一样,所以存在:利润×80=(利润-5)×100,可以得出利润是25元。

所以成本是100-25=75元。

解法二:减价100×5%=5元,多订购5×4=20件,如果按照原价销售,就会多获得20÷80=1/4的利润。那么减价的.5元,相当于原来利润的1-1÷(1+1/4)=1/5。那么原来的利润是5÷1/5=25元。因此成本是100-25=75元。

减价5%就是减价了:100×5%=5元

所以多订了:4×5=20件

共订购:80+20=100件

现在的售价是:(100-5)×100=9500元----------100件的成本和利润

原来的售价是:80×100=8000元--------------80件的成本和利润

因为利润一样,所以9500-8000=1500元是100-80=20件的成本

最简单的数学应用题 篇6

1.小熊捡了9个玉米,小猴捡的是小熊的4倍,他们一共捡了多少个玉米?

2. 食品店有85听可乐,上午卖了46听,下午卖了30听,还剩多少听?

3. 操场上原有16个同学,又来了14个。这些同学每5个一组做游戏,可以分成多少组?

4、超市里买4袋饼干要付8元,买8袋饼干要付多少元?

5、老师有8袋乒乓球,每袋6个,借给同学15个,还剩多少个?

6. 一小桶牛奶5元钱,一大桶牛奶是一小桶的4倍,买一大一小两桶牛奶共需要多少钱?

7、三个小队一共捉了42条虫子,第一队捉了18条,第二队捉了16条。第三小队捉了多少条虫子?

8. 王老师在文具店买了5张绿卡纸,15张红卡纸。红卡纸是绿卡纸的多少倍?

9. 二年级一班有20名男生,22名女生,平均分成6个小组,每组有几名同学?

10、一辆空调车上有42人,中途下车8人,又上来16人,现在车上有多少人?

11、红领巾养鸡场有公鸡44只,母鸡比公鸡多16只。母鸡有多少只?

12、红领巾养鸡场有母鸡60只,母鸡比公鸡多14只,公鸡有多少只?

13、小白兔有72只,小狗有9只,小白兔的只数是小狗的几倍?

14、56个桃子平均分给7只小猴,每只小猴分几个?

15、商店有自行车60辆,卖了4天,每天卖8辆,还剩多少辆?

16、 有25个苹果,梨比苹果少7个,有多少个梨?

17、花丛中有蜻蜓和蝴蝶共35只,飞走了6只,又飞来了12只。现在花丛中蜻蜓和蝴蝶有多少只?

18、停车场有卡车35辆,有轿车24辆。开走了17辆,现在有多少辆车?

19、小明做了18面绿旗,又做了32面红旗。送给幼儿园14面,小明现在还有多少面?

20、面包师傅做了54个面包,小明买走了19个,小红买走了25。你还可以买几个?

参考答案

1. 45

2. 9

3. 6

4. 16

5. 33

6. 25

7. 8

8. 3

9. 7

10. 50

11. 60

12. 46

13. 8

14. 8

15. 28

16. 18

17. 41

18. 42

19. 36

20. 10

最简单的数学应用题 篇7

133.在一环形跑道上,甲从A点,乙从B点同时出发反向而行,6分钟后两人相遇,再过4分钟甲到达B点,又过8分钟两人再次相遇.甲、乙环行一周各需要多少分钟?

解:甲乙合行一圈需要8+4=12分钟。乙行6分钟的路程,甲只需4分钟。

所以乙行的12分钟,甲需要12÷6×4=8分钟,所以甲行一圈需要8+12=20分钟。乙行一圈需要20÷4×6=30分钟。

134.甲、乙沿同一公路相向而行,甲的速度是乙的1.5倍.已知甲上午8点经过邮局,乙上午10点经过邮局,问甲、乙在中途何时相遇?

解:我们把乙行1小时的路程看作1份,

那么上午8时,甲乙相距10-8=2份。

所以相遇时,乙行了2÷(1+1.5)=0.8份,0.8×60=48分钟,

所以在8点48分相遇。

135.甲、乙两人同时从山脚开始爬山,到达山顶后就立即下山.他们两人下山的速度都是各自上山速度的2倍.甲到山顶时,乙距山顶还有400米,甲回到山脚时,乙刚好下到半山腰.求从山顶到山脚的距离.

解:假设甲乙可以继续上行,那么甲乙的速度比是(1+1÷2):(1+1/2÷2)=6:5

所以当甲行到山顶时,乙就行了5/6,所以从山顶到山脚的距离是400÷(1-5/6)=2400米。

136.一辆公共汽车载了一些乘客从起点出发,在第一站下车的乘客是车上总数(含一名司机和两名售票员)的1/7,第二站下车的乘客是车上总人数的1/6,.......第六站下车的乘客是车上总人数的1/2,再开车是车上就剩下1名乘客了.已知途中没有人上车,问从起点出发时,车上有多少名乘客?

解:最后剩下1+1+2=4人。那么车上总人数是

4÷(1-1/2)÷(1-1/3)÷……÷(1-1/6)÷(1-1/7)=28人

那么,起点时车上乘客有28-3=25人。

137.有三块草地,面积分别是4亩、8亩、10亩.草地上的草一样厚,而且长得一样快,第一块草地可供24头牛吃6周,第二块草地可供36头牛吃12周.问第三块草地可供50头牛吃几周?

解法一:设每头牛每周吃1份草。

第一块草地4亩可供24头牛吃6周,

说明每亩可供24÷4=6头牛吃6周。

第二块草地8亩可共36头牛吃12周,

说明每亩草地可供36÷8=9/2头牛吃12周。

所以,每亩草地每周要长(9/2×12-6×6)÷(12-6)=3份

所以,每亩原有草6×6-6×3=18份。

因此,第三块草地原有草18×10=180份,每周长3×10=30份。

所以,第三块草地可供50头牛吃180÷(50-30)=9周

解法二:设每头牛每周吃1份草。我们把题目进行变形。

有一块1亩的草地,可供24÷4=6头牛吃6周,供36÷8=9/2头牛吃12周,那么可供50÷10=5头牛吃多少周呢?

所以,每周草会长(9/2×12-6×6)÷(12-6)=3份,

原有草(6-3)×6=18份,

那么就够5头牛吃18÷(5-3)=9周

138.B地在A,C两地之间.甲从B地到A地去,出发后1小时,乙从B地出发到C地,乙出发后1小时,丙突然想起要通知甲、乙一件重要的事情,于是从B地出发骑车去追赶甲和乙.已知甲和乙的速度相等,丙的速度是甲、乙速度的3倍,为使丙从B地出发到最终赶回B地所用的时间最少,丙应当先追甲再返回追乙,还是先追乙再返回追甲?

我的思考如下:

如果先追乙返回,时间是1÷(3-1)×2=1小时,

再追甲后返回,时间是3÷(3-1)×2=3小时,

共用去3+1=4小时

如果先追甲返回,时间是2÷(3-1)×2=2小时,

再追乙后返回,时间是3÷(3-1)×2=3小时,

共用去2+3=5小时

所以先追乙时间最少。故先追更后出发的。

最简单的数学应用题 篇8

1、李红早晨7点从家出发去学校,她走了2分钟后发现忘带语文书了,她立刻回家拿了书又立即往学校赶,这样她到校时是7点20分。如果她每分钟走80米,李红家离学校有多远?

2、一辆货车从甲城往乙城运货,每小时行42千米,预计6小时到达。但行到一半时,由于机器出了故障,用了1小时进行修理,如果仍要求在预计时间到达乙地,余下的路程必须每小时行多少千米?

3、一辆卡车上午10时从南京出发开往浙江,原计划每小时行驶60千米,下午1时到达,但实际晚点2小时。这辆汽车实际每小时行驶多少千米?

4、明明家离学校有200米,他走了4分钟,如果用同样的速度,从学校到少年宫明明走了12分钟。学校到少年宫有多少米?

5、小李骑摩托车以每分钟650米的速度从甲村到乙村去办事,他骑出5分钟后,因忘记带东西立即返回去拿,然后又立即出发去乙村,这样他一共用了25分钟才到达乙村。两个村相距有多少米?

6、一列火车早上5时从甲地开往乙地,下午1时可以到达。开汽车从甲地到乙地要多用2小时,如果汽车每小时行52千米,甲乙两地相距多少千米?

7、张青平时都用每分钟66米的速度从家出发去上学,这样他10分钟就能到学校。有一天他走到一半时,遇到一个熟人讲了2分钟话,如果他仍要按时到校,余下的路程每分钟要走多少米?

8、小明和小红的家在同一条大街的两头。如果小明每分钟走40米,小红每分钟走30米,他们两人约好同时出发,相向而行,经过3分钟两人相遇。他们两家相距多远?

9、一列客车和一列火车分别从两座城市同时出发,相向而行,客车每小时行45千米,火车每小时行35千米,经过8小时,两车在途中相遇。求:两座城市相距多远?

10、一架飞机以每小时420千米的速度从A城出发,飞向B城。一小时后,另一架飞机以每小时小时460千米的速度从B城飞往A城,经过3小时遇到从A城飞来的飞机。AB两城相距多少千米?

11、小红和小明从相距1500米的两地同时出发,相向而行,小红每分钟走55米,小明每分钟比小红多行15米。经过10分钟后,两人相遇了吗?

12、敌舰在我军舰前面以每分钟120米的速度逃跑,我军舰以每分钟180米的速度在后面追,20分钟后追上敌舰。问:一开始敌舰在我军舰前多少米?

13、敌舰在我军舰前1500米处逃跑,我军舰在后面追。敌舰每分钟行150米,我军舰每分钟行180米,多少分钟才能追上?

14、小丽和小张都从东村往西村走,小丽用每分钟120米的速度先走了5分钟后,小张才用每分钟150的速度出发,结果两人同时到达。东西两村相距多远?

15、小红和小明都从甲村到乙村去办事,小红以每分120米的速度先走了一会,小明以每分140米的速度在后面追,用5分钟就追上了。小红先走了多少米?

16、甲飞机每小时飞行400千米,乙飞机每小时飞行430千米。它们同时从A城飞往B城,4小时后它们相隔多少千米?

17、一辆卡车在一辆轿车前52千米处以每小时36千米的速度开往甲地。这辆轿车每小时行40千米,多少小时后才能追上卡车?

22、夜行军时,甲队同学由于帮助受伤的同学,落在了乙队同学后面150米,乙队同学仍以每分钟80米的速度前进。老师要求甲队同学以每分钟110米的速度跑步追及,几分钟可以追上乙队?

23、一辆汽车以每小时30千米的速度从甲地开往乙地,开出4小时后,一列火车以每小时90千米的速度从甲地开往乙地,结果同时到达。甲乙两地相距多远?

24、上海路小学有一个300米的环形跑道。洋洋和宁宁同时从起跑线起跑,洋洋每秒跑6米,宁宁每秒跑4米,多少秒后洋洋能追上宁宁?这时两人各跑了多少米?

最简单的数学应用题 篇9

1、体育用品有90个乒乓球;如果每两个装一盒;能正好装完吗?如果每五个装一盒;能正好装完吗?为什么?

90÷2=45盒

90÷5=18盒

答:如果每两个装一盒;能正好装完如果每五个装一盒;也能正好装完。因为90能整除五。

2、体育店有57个皮球;每三个装在一个盒子里;能正好装完吗?

57÷3=19盒

答:能正好装完。

3、甲;乙两个人打打一份10000字的文件;甲每分打115个字;乙每分钟打135个字;几分钟可以打完?

10000÷(115+135)=40分

答:40分钟可以打完。

4、五年级同学植树;13或14人一组都正好分完;五年级参加植树的同学至少有多少人? 13x14=192人

答:五年级参加植树的人至少有192人.

下面几道题目虽然属于应用题;但跟方程有关。我都是用方程解答的。

5、两辆汽车从一个地方相背而行.一车每小时行31千米;一车每小时行44千米.经过多少分钟后两车相距300千米?

方程:

解:两车x时后相遇.

31x+44x=300

75x=300

x=4

4小时=240分钟

答:经过240分钟后两车相距300千米.

6、两个工程队要共同挖通一条长119米的隧道;两队从两头分别施工.甲队每天挖4米;乙队每天挖3米;经过多少天能把隧道挖通?

解:设x天后挖通隧道

3x+4x=119

7x=119

x=17

答:经过17天挖通隧道.

7、学校合唱队和舞蹈队共有140人;合唱队的.人数是舞蹈队的6倍;舞蹈队有多少人?解:设舞蹈队有x人

6x+x=140

7x=140

x=20人

答:舞蹈队有20人.

从这里开始不是方程题了.

8、兄弟两个人同时从家里到体育馆;路长1300米.哥哥每分步行80米;弟弟骑自行车以每分180米的速度到体育馆后立刻返回;途中与哥哥相遇;这时哥哥走了几分钟?

1300x2=2600米

2600÷(180+80)

=2600÷260

=10分

答:这时哥哥走了10分钟.

9、六一儿童节;王老师买了360块饼干;480块糖;400个水果;制作精美小礼包;分给小朋友作为礼物;至多可做几个小礼包?

360+480+400=1240个

答:至多可做1240个小礼包.

10、淘气买了40个气球;请同学来家比吹气球.为了能把气球平分;淘气应该请几个同学来比吹气球?淘气不参加.

40÷2=20人40÷4=10人40÷5=8人

40÷8=5人40÷10=4人40÷20=2人

答:请同学的方法有6种;分别是:20人;10人;5人;8人;4人;2人.

11、一块梯形的玉米地;上底15米;下底24米;高18米.每平方米平均种玉米9株;这块地一共可种多少株玉米?

(15+24)x18÷2=351平方米

351x9=3195株

答:这块地可种玉米3159株.

12、某班学生人数在100人以内;列队时;每排5人;4人;3人都刚好多一人;这班有多少人?

5x4x3=60人60+1=61人

答:这班有61人.

13、王月有一盒巧克力糖;每次7粒;5粒;3粒的数都余1粒;这盒巧克力糖至少有多少粒?

7x5x3=105粒105+1=106粒

答:这盒巧克力糖至少有106粒.

14、晨光小区有一段长15米;宽1.2米的长方形甬道要铺方砖.设计师准备了边长是30厘米的方砖;请你算一算:需要几块这样的方砖?如果每块方砖3元;那么铺这段甬道需要多少元?

15米=150分米1.2米=12分米30厘米=3分米

150x12=1800平方分米3x3=9平方分米

1800÷9=200块200x3=600元

答:需要200块这样的方砖;需要600元.

15、有两块面积相等的平行四边形实验田;一块底边长70米;高45米;另一块底边长90米;高是多少米?

70x45=3150平方米3150÷90=35米

答:高是35米.

16、一批钢管叠成一堆;最下层有10根;每上1层少放1根;最上1层放了5根.这批钢管有多少根?

10-5+1=6层(10+5)x6÷2

=15x6÷2

=90÷2

=45根

答:这批钢管有45根.

17、有一些糖果;平均分别给21个小朋友剩20块;平均分给35个小朋友剩34块;平均分给56个小朋友剩55块。你知道这堆糖果至少有多少块吗?

解:21、35、56的最小公倍数是840;840-1=839(块)

答:这堆糖果至少有839块

18、2台同样的抽水机;3小时可以浇地1.2公顷;1台抽水机每小时可以浇地多少公顷?

1.2÷3=0.4 0.4÷2=0.2

19、前年小明比妈妈小24岁;今年妈妈的年龄是小明的3倍。小明和妈妈今年分别是多少岁?

设小明年龄是x;

则3x-x=24 x=12

小明12;妈妈36

20、一个立方体的棱长总和是48分米;它的表面积和体积各是多少?

解:48÷12=4分米

则表面积为4x4=16平方分米

16x6=96平方分米

体积为4x4x4=64立方分米

最简单的数学应用题 篇10

1、甲、乙两车都从A地出发经过B地驶往C地,A,B两地的距离等于B,C两地的距离.乙车的速度是甲车速度的80%.已知乙车比甲车早出发11分钟,但在B地停留了7分钟,甲车则不停地驶往C地.最后乙车比甲车迟4分钟到C地.那么乙车出发后几分钟时,甲车就超过乙车.

2、乙、丙三人在A、B两块地植树,A地要植900棵,B地要植1250棵.已知甲、乙、丙每天分别能植树24,30,32棵,甲在A地植树,丙在B地植树,乙先在A地植树,然后转到B地植树.两块地同时开始同时结束,乙应在开始后第几天从A地转到B地?

3、一辆大轿车与一辆小轿车都从甲地驶往乙地.大轿车的速度是小轿车速度的80%.已知大轿车比小轿车早出发17分钟,但在两地中点停了5分钟,才继续驶往乙地;而小轿车出发后中途没有停,直接驶往乙地,最后小轿车比大轿车早4分钟到达乙地.又知大轿车是上午10时从甲地出发的.那么小轿车是在上午什么时候追上大轿车的.

4、小明早上从家步行去学校,走完一半路程时,爸爸发现小明的数学书丢在家里,随即骑车去给小明送书,追上时,小明还有3/10的路程未走完,小明随即上了爸爸的车,由爸爸送往学校,这样小明比独自步行提早5分钟到校.小明从家到学校全部步行需要多少时间?

5、一个圆柱形容器内放有一个长方形铁块.现打开水龙头往容器中灌水.3分钟时水面恰好没过长方体的顶面.再过18分钟水已灌满容器.已知容器的高为50厘米,长方体的高为20厘米,求长方体的底面面积和容器底面面积之比.

6、有三块草地,面积分别是5,15,24亩.草地上的草一样厚,而且长得一样快.第一块草地可供10头牛吃30天,第二块草地可供28头牛吃45天,问第三块地可供多少头牛吃80天?

7、有甲、乙两根水管,分别同时给A,B两个大小相同的水池注水,在相同的时间里甲、乙两管注水量之比是7:5.经过2+1/3小时,A,B两池中注入的 水之和恰好是一池.这时,甲管注水速度提高25%,乙管的注水速度不变,那么,当甲管注满A池时,乙管再经过多少小时注满B池?

8、甲、乙两辆清洁车执行东、西城间的公路清扫任务.甲车单独清扫需要10小时,乙车单独清扫需要15小时,两车同时从东、西城相向开出,相遇时甲车比乙车多清扫12千米,问东、西两城相距多少千米?

9、某工程,由甲、乙两队承包,2.4天可以完成,需支付1800元;由乙、丙两队承包,3+3/4天可以完成,需支付1500元;由甲、丙两队承包,2+6/7天可以完成,需支付1600元.在保证一星期内完成的前提下,选择哪个队单独承包费用最少?

10、甲数除以乙数,乙数除以丙数,商相等,余数都是2,甲、乙两数之和是478.那么甲、乙丙三数之和是几?

延伸阅读

[精]最简单的数学应用题


处理文档已经成为现代办公室中保持高效率的重要途径之一,关于范文的重要性越来越多的专家学者开始持有一致的观点。你应该很想找到适合新人借鉴的范文吧?没有阅读过“最简单的数学应用题”的朋友肯定不应该错过这篇文章,为便再次阅读请将本文加入收藏!

最简单的数学应用题 篇1

1、超市原有25筐桔子,又运进65筐,后来卖了40筐,超市现有桔子多少筐?

25+65-40

=90-40

=50(筐)

2、幼儿园举行庆六一活动,一共买了600个气球,用了260个红气球,190个黄气球,还剩多少个?

600-260-190

=340-190

=150(个)

3、妈妈用100元钱买回56米花布,做床单用去12米,做衣服用去27米,还剩多少米?

56-12-27

=44-27

=17(米)

4、要订购800只风筝,第一周做了286只,第二周做了327只。

(1)还剩多少只没完成?

800-286-327

=514-327

=187(只)

(2)你还能提出什么问题?

两周一共做了多少只?

286+327=613(只)

5、一班:矿泉水184个;易拉罐:240个

二班:矿泉水236个;易拉罐:169个

三班:矿泉水145个;易拉罐:246个

(1)一班和二班一共收集了多少个矿泉水瓶?

184+236=420(个)

(2)三班收集的易拉罐比二班多多少个?

246-169=77(个)

(3)你还能提出什么问题?

例:一班和二班一共收集了多少个矿泉水瓶?

必须列式解答。

(仿照上面的(1)、(2)问稍微改改就行,不要提很复杂的问题,容易出错)

6、一本语文书的厚度约为8毫米,5本这样的书厚度大约为多少毫米?合多少厘米呢?

8x5=40(毫米)

40毫米=4厘米

7、小红的身高是120厘米,妈妈的身高是165厘米,小红再长多少厘米就和妈妈一样高了?

165-120=45(厘米)

8、一根绳子长24米,每4米做一根跳绳,可以做多少根跳绳?

24÷4=6(根)

9、小明的身高是136厘米,冰箱比小明还高64厘米,冰箱比门矮25厘米。

(1)房门的高是多少厘米?

136+64-25

=200-25

=175(厘米)

(2)你还能提出什么问题?

冰箱高多少厘米?

136+64=200(厘米)

10、一辆自行车288元,一个风扇:245元,妈妈有600元钱,买这两样东西够吗?

288+245=533(元)

600>533

答:买这两样东西够。

11、剧院共有500个座位,一年级197人,二年级201人。

(1)剧院能同时容纳两个年级看电影吗?

197+201=398(人)

398

答:剧院能同时容纳两个年级看电影。

(2)如果有空位,还空几个座位?

500-398=102(个)

12、商店卖出340袋大米,卖出的面粉比大米多54袋,卖出面粉多少袋?

340+54=394(袋)

13、洗衣机568元,比录音机贵280元,录音机多少元钱?

568-280=288(元)

14、小东立定跳远跳了140厘米,小华比小东多跳30厘米,小强比小东少跳38厘米。

(1)小华跳了多少厘米?

140+30=170(厘米)

(2)小强跳了多少厘米?

140-38=102(厘米)

15、三年级捐435元,四年级比三年级多捐78元,五年级捐的比四年级少27元。

(1)三年级和四年级一共捐多少钱?

435+78+435

=513+435

=948(元)

(2)五年级捐了多少钱?

435+78-27

=513-27

=486(元)

16、六.一儿童节到了,同学们在折千纸鹤。小华折了203只纸鹤,小红折的比小华多47只,小丽折的比小华少20只。

①小红折了多少只千纸鹤?

203+47=250(只)

②小华和小丽大约一共折了多少只?

203-20=183(只)

203+183≈400(只)

200 200

17、光明小学女生有496人,男生比女生多64人,男生有多少人?幼儿园一共有多少人?

496+64=560(人)

496+560=1056(人)

18、有一桶油,第一次倒出125千克,第二次倒出的比第一次少30千克,两次一共倒出多少千克?

125-30+125

=95+125

=220(千克)

19、商店有200个红气球,红气球比黄气球多50个,一共多少个气球?

200-50+200

=150+200

=350(个)

20、幼儿园图书室有300本故事书,已经借出228本,剩下的每个班分9本,可以分给几个班?

(300-228)÷9 入列综合算式,千万别掉括号

最简单的数学应用题 篇2

一、活动目标:

1.能根据图片内容编8以内加、减法的应用题并列出相应的算式。

2.让幼儿学习分析问题的能力以及看图编应用题的想象力。

3.培养幼儿养成良好的坐姿和正确的握笔姿势,并形成良好的操作习惯。

4.提高幼儿思维的敏捷性。

5.培养幼儿的多项思维能力及动手操作能力,培养幼儿对数学活动的兴趣。

能根据图片内容编8以内加、减法的应用题并列出相应的算式。

四、活动方法与手段:

多媒体演示法、谈话法、操作法等等。

1、1-20单数,两个两个数1-20,五个五个数。

1.幼儿根据教师的要求复习数数。

2.师幼共同玩碰球游戏。

运用不同的形式复习数数,激发幼儿的兴趣并帮助他们巩固对数的认识。

提问:小朋友,图片上有什么呀?接下来发生了什么事情?你能将这件事情编成一道应用题说一说?那列成算式怎么说?你还能根据这个算式编出其他的应用题吗?

3、看图自编应用题并列出相应的算式。

教师:接下来老师可要考考大家,看看你们谁能又快又准地看着图片编一道应用题并列出一个算式呢?

3、教师出示第三幅图片(小朋友玩气球)。

7、师:小朋友,你们都会了吗?现在可是要你们来练练本领咯!

8、出示图片,讲解作业要求与方法。

注意:

(1)写作业时记得看清楚是加法还是减法哦!

(2)我们在写字时要保持正确的坐姿和握笔姿势,谁来说说看应该是什么样子的?

教师小结:将纸放平摆正,抬头挺胸,手臂放平,食指与拇指的前端捏住笔杆,眼睛离纸头比要一把尺还长一点的距离。

9、幼儿操作,教师巡回指导。

行列算式。

6.说一说正确的坐姿和握笔的方法。

1.通过观看课件让幼儿清晰的了解整个事件,活动中教师以提问的引导方式帮助幼儿学会看图编应用题和看图列算式两个主要技能。在这里教师只是辅助的作用,运用课件生动形象又直接的观察让幼儿能更进一步的成为学习的小主人。不仅学习了新的技能,而且提升了幼儿的观察力和语言组织能力。

2.在本次活动中,运用课件创设了多种不同的情景氛围,让孩子在感兴趣的基础上主动去学习,在复习数数和碰球游戏的.基础上清晰地知道6、7、8的组成与分合,在观察图片与对话中帮助幼儿梳理图中内容,使得幼儿能更好理解内容,让绝大多部分幼儿都能较轻松的编出应用题并列出算式。

3.在操作环节中,询问并提醒幼儿正确的坐姿与握笔姿势,让孩子在平时的生活中就注意到写字时的良好习惯,并应该每次都坚持保持正确姿势。

请个别幼儿展示自己的作业纸,其他幼儿进行检查作答情况。通过作业点评帮助幼儿了解自己新知识的掌握情况。

活动反思:

在整个教学活动中,“应用题”相对于幼儿来说,是一个较为难理解又难掌握的领域,如何让幼儿们在提倡的“玩中学”这一模式中掌握知识点呢?我将此作为本次课堂设计的一个难点。以动画人物的形象激发幼儿的兴趣,让幼儿随着喜爱的动画人物进入我所创设的环境中,让幼儿们在与动画人物相互交流的基础上,进行知识性的学习。在编应用题时,小朋友基本能大声的来编,可能是父母在场的关系,小朋友积极举手,认真的投入到活动中。在数学练习时,父母们都走去看自己的宝宝做练习,这个环节有点乱,可是家长们的心情可以理解,所以这个环节在父母们的一起参与下结束了。

最简单的数学应用题 篇3

导语:数学乘除法在生活中应用也是比较广泛的,所以要巩固知识哦!下面是小编为你准备的小学数学乘除法应用题,希望对你有帮助!

1、原来有22人看戏,来了13人,又走了6人,现在看戏的有多少人?

2、面包房做了54个面包,第一组买了22个,第二组买了8个,还剩多少个?

3、男生有22人,女生有21人,其中有16人参加比赛,还有多少人没参加?

4、三个小组一共收集了94个矿泉水瓶,第一组收集了34个,第二组收集了29个,第三组收集了多少个?

5、汽车里有41人,中途有13人上车,9人下车,车上现在还有多少人?

6、小红有28个气球,小芳有24个气球,送给幼儿园小朋友15个,还剩多少个?

7、小军和小丽做灯笼,小军做了21个,小丽做了18个,送给老师50个,他们还要做多少个?

8、故事书有74页,小丽第一天看了20页,第二天看了23页,还剩多少页没有看?

9、羊圈里原来有58只羊,先走了6只,又走了7只,现在还有多少只?

10、小东上午做了10道数学题,下午做的比上午多3道,小东一共做了多少道?

11、小红看故事书,第一天看了15页,第二天看的比第一天少6页,两天一共看了多少页?

12、小明今年8岁,爸爸今年35岁。爸爸50岁时,小明多少岁? 13、小东今年6岁,妈妈今年30岁。小东12岁时,妈妈多少岁?

14、爸爸、妈妈和哥哥都掰了9个玉米,我掰了6个,我们家一共掰了多少个玉米?

15、小明种了5行萝卜,每行9个。送给邻居15个,还剩多少个?

16、会议室里,单人椅有30把,双人椅有8把,一共能坐多少人?

17、食堂运来3车大米,每车8袋,吃掉18袋后,还剩多少袋?

18、有40人要过河,租8条小船(每条小船限乘4人)和1条大船(每条大船限乘6人),够坐吗?

19、小明买一支钢笔花了8元,买书包的'钱是买钢笔的6倍,小明一共花了多少钱?

我有50元,要买一件29元的衣服和一副18元的眼镜,还剩多少元?(两种方法)

20、小李有43张邮票,小生的邮票比小李多9张,小英的邮票比小生少14张。(1)小生有邮票多少张?

(2)小英有邮票多少张? (3)他们三人一共有邮票多少张?

21、小明和爸爸、妈妈一起去动物园玩,用20元买票够吗? 票价:儿童票每张:5元;成人票每张:8元。

23、2002年世界杯亚洲区十强赛B组得分,中国队主场得分12分,客场得分比主场得分少5分,中国队的总分是多少分?

24、2002年世界杯亚洲区十强赛B组得分,卡塔尔队主场得分3分,客场得分是主场得分的2倍,卡塔尔队的总分是多少分?

25、小明今年8岁,爸爸的年龄是小明的4倍,爸爸比小明大多少岁?

26、小刚存了8元,小兵存的是小刚的9倍,小兵和小刚一共存了多少钱?

27、6个小朋友要折80只纸鹤,每人已折了9只,还要折多少只? 12元能买3辆小汽车,要买5辆小汽车要多少元?

28、有2箱水,每箱有8瓶,把这些水平均分给4个同学,每个同学能分几瓶?

29、2张纸可以做8朵花,5张纸能做多少朵?

30、同学们去公园划船,每6人一组,需要4条船。如果每8人一组,需要几条船?

31、张姨用15元买了3双鞋,买5双鞋要多少元?

32、王老师买8条跳绳用了40元,一个皮球比一条跳绳贵3元,一个皮球多少元?

33、有4篮苹果,每篮9个,把苹果平均分给6个小朋友,每人几个? 34、小红每天做8朵红花,做了3天。她要把红花奖给6个小朋友,平均每人多少朵?

35、妈妈买了3个茶杯用去24元,爸爸买了4个碗用去36元。茶杯和碗哪个贵?贵多少?

36、25人用一条船过河,每次只能坐5人,要几次才能过完?

37、有4只小兔,小猴的只数是小兔的3倍,现在每2只小猴分成一组去抬东西,可以分成几组?

38、3个小动物吃了12个苹果,7个小动物要吃多少个苹果?

39、一本故事书24页,小红每天看6页,几天看完?这本故事书小明8天看完,每天要看几页?

40、小东有4元,小明的钱的小东的3倍。小明买6个本子刚好把钱用完,每个本子几元?

41、小朋友吃早餐,每6人坐一张桌子,要坐2张桌子,一共有多少人? 46、妈妈买了4盒彩笔,每盒8支,用去了15支,还剩多少支?

42、小明和小红写字,小明写了3行,每行6个,小红写了15个,谁写得多?多几个?

43、小明和小红写字,小明写了3行,每行6个,小红写了4行,每行5个,两人一共写了多少个?

44、操场上有6行,每行6人,如果排成4行,每行有多少人? 50、有24张画,平均挂在6间教室,每间教室有多少张? 1、商店里有4盒皮球,每盒6个,卖出20个,还剩多少个? 例2商店里有4盒皮球,每盒6个,卖出20个,还剩多少个? 小明有6套画片,每套3张。又买来4张,现在有多少张?

45、同学们做了40朵花,送给托儿所30朵,还剩多少朵?

46、同学们分5组做纸花,每组做8朵。送给托儿所30朵,还剩多少朵?

47、老师出了20道乘法算式,16道除法算式。小华算了32道,还有几道没算?

48、老师出了4栏算式,每栏9道。小明算了34道,还有几道没算?

49、同学们做了16只红风车,20只花风车。送给幼儿园18只,还有多少只?

50、同学们分4组做风车,每组做9只。送给幼儿园18只,还有多少只?

最简单的数学应用题 篇4

比和比例应用题是小学数学应用题的重要组成部分。在小学中,比的应用题包括:比例尺应用题和按比例分配应用题,正、反比例应用题。

(一)比例尺应用题

这种应用题是研究图上距离、实际距离和比例尺三者之间的关系的。

● 解答这类应用题时,最主要的是要清楚比例尺的意义,即:

图上距离÷实际距离=比例尺

根据这个关系式,已知三者之间的任意两个量,就可以求出第三个未知的量。

● 例题如下:

在比例尺是1:3000000的地图上,量得A城到B城的距离是8厘米,A城到B城的实际距离是多少千米?

● 思路分析:

把比例尺写成分数的形式,把实际距离设为x,代入比例尺的关系式就可解答了。所设未知数的计量单位名称要与已知的计量单位名称相同。

(二)按比例分配应用题

这类应用题的特点是:把一个数量按照一定的比分成两部分或几部分,求各部分的数量是多少。

这是学生在小学阶段唯一接触到的不平均分问题。

● 这类应用题的解题规律是:

先求出各部分的份数和,在确定各部分量占总数量的几分之几,最后根据求一个数的几分之几是多少,用乘法计算,求出各部分的数量。

按比例分配也可以用归一法来解。

● 例题如下:

一种农药溶液是用药粉加水配制而成的,药粉和水的重量比是1:100。2500千克水需要药粉多少千克千克药粉需加水多少千克?

● 思路分析:

已知药和水的份数,就可以知道药和水的总份数之和,也就可以知道药和水各自占总份数的几分之几,知道了分率,相应地也就可以求出各自相对量。

(三)正、反比例应用题

解答这类应用题,关键是判断题目中的两种相关联的量是成正比里的量,还是成反比例的量。

如果用字母x、y表示两种相关联的量,用K表示比值(一定),两种相向关联的量成正比例时,用下面的式子来表示:

kx=y(一定)。

如果两种相关联的量成反比例时,可用下面的式子来表示:

×y=K(一定)。

● 例题如下:

六一玩具厂要生产20XX套儿童玩具。前6天生产了960套,照这样计算,完成全部任务共需要多少天?

● 思路分析:

因为工作总量÷工作时间=工作效率,已知工作效率一定,所以工作总量与工作时间成正比例。

最简单的数学应用题 篇5

活动目标:

了解自编应用题必须有两个数和一个问题,能编出7以内的数的应用题并说出算式。体验创编过程的成功与快乐,提高语言表达能力。

活动准备:PPT

活动过程:

1.师:(出示PPT)我们先来复习一下7的分合式有哪些,请小朋友来说一下。

2.现在,谁能根据7可以分成1合6来列算式,提醒一下,这个分合式可以列出4个算式哦!

1+6=7,6+1=7:;7-1=6,7-6=1。

小结:对于加法来说,小的+小的=大的;对于减法来说,大的-小的,对应的那个数就是答案。

(出示第二张PPT),请小朋友来看一下,你看到了什么?

Eg:草地上有1只黄色的蝴蝶,又来了6只粉色的蝴蝶,现在一共有几只蝴蝶?

你还能说出其他的应用题吗?(提示,加法两个,减法两个。)、

经过第一个的练习,谁能自己说出这一个。

Eg:草地上有5只灰色的兔子,又来了2只白色的兔子,现在草地上一共有几只兔子?列算式,5+2=7

(根据上一个练习,同样请小朋友说出剩余的3个应用题)

(出示PPt3)刚才小朋友说的都很好,那现在来看这一个,会的举手。

活动延伸:

(PPt4)来看图,谁能根据这个图编出更多的应用题,列出更多的算式。

(根据:树上树下;鸟的大小;尾巴的方向)

活动反思:

在整个教学活动中,“应用题”相对于幼儿来说,是一个较为难理解又难掌握的领域,如何让幼儿们在提倡的“玩中学”这一模式中掌握知识点呢?我将此作为本次课堂设计的一个难点。以动画人物的形象激发幼儿的兴趣,让幼儿随着喜爱的动画人物进入我所创设的环境中,让幼儿们在与动画人物相互交流的基础上,进行知识性的学习。在编应用题时,小朋友基本能大声的来编,可能是父母在场的关系,小朋友积极举手,认真的投入到活动中。在数学练习时,父母们都走去看自己的宝宝做练习,这个环节有点乱,可是家长们的心情可以理解,所以这个环节在父母们的一起参与下结束了。

最简单的数学应用题 篇6

【活动目的】

1、通过幼儿动手操作,了解总数与部分数的概念以及它你之间的关系。

2、在学习了10以内加减法的基础上,幼儿能书面练习10以内数的加减法式子中的填空题。

3、有兴趣参加数学活动。

4、让幼儿学习简单的数学题目。

【活动准备】

教具:装好皮球的篓子(大皮球4个、小皮球2个);装好水果的篓子(苹果7个、梨子3个)

学具:每人一个“小动物卡片”袋(两个品种,多少不一,总数不越过10);每人一盒橡皮泥;每人一支铅笔和一个数学练习本。

【活动过程】

一、教师出示装好皮球的小篓子,让幼儿说说篓子里有什么、有多少、有什么异同。引导幼儿说出总数,然后让幼儿把水果分类,并说出:“一部分是大皮球,有4个;一部分是小皮球,有2个。”让幼儿初步理解总体与部分的概念,并列出加减法算式:如4+2=62+4=66-4=26-2=4

二、教师出示装好水果的小篓子,让幼儿说说篓子里有什么、有多少、有什么异同。幼儿说出总数,然后让幼儿把水果分类,并说出:“一部分是苹果,有7个;一部分是梨子,有3个。”进一步让幼儿理解总体与部分的概念,并列出加减法式子。如:7+3=103+7=1010-7=310-3=7

三、引导幼儿做“对应口头练习”如:

①7+3=10

苹果是7个梨了是3个总体是10个

这是部分数也是部分数这是总数

同理:3+7=104+2=2+4=6引导幼儿说出哪是部分数?哪是总数?部分数有几个?总数有几个?

②10-3=7

水果有10个苹果有3个梨子有7个

这是总数这是部分数也是部分数

同理:10-7=364=26-2=4引导幼儿说出哪是总数?哪是部分数?部分数有几个?总数有几个?

四、引导幼儿说出关键句。如:

①在加法式子里,总数在最后,其它是部分数;在减法式子里,总数在最前,其它的是部分数。

得出结论:加法总数在最后,减法总数在最前。

②部分数与部分数合起来是总数,总数去掉(减去)部分数,剩下的还是部分数。

得出结论:要求总数,用部分数相加;要求部分数,用总数减去另一个部分数。

五、幼儿玩卡片。幼儿取出卡片,倒出小动物卡片,说说有些什么,总数有多少,进行分类,并做好记录。把自己分类记录的结果说给同伴听。

六、幼儿玩橡皮泥。规则是每人做2种物品,多少不限。10分钟后,让幼儿说出捏了多少物品,一部分是什么,有多少,另一部分又是什么,又是多少。做记录,并说说记录下来的哪是总数,哪是部分数。

七、幼儿认识括号“()”;书面练习;教师巡回指导。

3+()=45+()=7()+2=5()+6=10

7-()=3()-2=85-()=1()-3=6

八、教师总结,检查幼儿练习结果。

【活动反思】

本次活动课,我试了三次,不断反思自己在与幼儿活动时,出现哪些纰漏,并逐步加以改善。

第一次试教,活动效果不是很好,我发现幼儿对“总数”好理解,对“部分数”就有点难度,幼儿始终不能把“部分物体”与“部分数”联系起来。

第二次试教,我改变了指导方法,让幼儿集体操作活动时,个别指导启发幼儿说出自己记录中的总数在哪里,是几?部分数在哪里,又是几和几?在这次活动中又发现有一部分幼儿离开实物,又找不到“总数”和“部分数”。因此我在上一次的基础上做了一些微调,让幼儿把直观的学具和抽象的理论结合起来,这样以后,活动效果很不错。

第三次试教,效果显著。

总结三次的数学教育活动,得到的启示是:

①在教学活动中不断找到新的切入点。

②寻找数学中规律,以点代面,一通百通。

③与其他活动一样,以游戏为主,化抽象为具体。

最简单的数学应用题 篇7

某工厂加工一批零件,3个工人5天加工了315个,照此速度,5个工人12天可以加工多少个零件?

【思路导航】这是一道“二次归一问题”,即题目中有两个份数,需要用两次除法才能求出单一量。

根据已知条件,“3个工人5天加工了315个”,那么每人每天加工的数量就是:315÷3÷5=21(个)。

有了单一量之后,“5个工人12天”加工的总数就是每人每天加工的数量乘人数,再乘天数,也就是21×5×12=1260(个)。

最简单的数学应用题 篇8

活动目标:初步学习自编加法应用题

活动重点:学习编应用题的方法

活动难点:理解应用题中各要素的关系。

活动准备:找朋友的音乐、课件、图片、算式卡片

活动过程:

一、师生合作、共同游戏

师:今天我们一起来玩《找朋友》的游戏,我会邀请我的好朋友到前面来。

师:老师请了几个小美女?

师:4个小美女(同时出示图卡)这个游戏真好玩,我们再来玩一次。

师:老师请了几个小帅哥?

师:3个小帅哥(同时出示图卡)

师:现在我来提一个问题:一共请来了几个小朋友?出示图卡(一共?)

师:我刚才提出了一个什么问题?我刚才说到的两个数字代表什么?

师:刚才我们说了一件找朋友的事情,出现了2个数字,提出了一个问题,是用"一共"来提问的,这就是加法应用题。现在我请xx来完整的编一下(图文结合)(编应用题的模式)

二、看图编应用题

师:你们真棒,给自己鼓鼓掌,我们再来编一编

师:你看到了什么?(强调完整)出示数字1

又发生了什么事情呢?出示数字2

谁来提一个问题?出示加号

他们三个合起来就是一道完整的应用题。

谁能把刚才的事情编成一道完整的应用题?

引导幼儿理解问题中不能出现数字

师:我们再来看下一副图

师:你看到了什么?出示数字3

师:你又看到了什么?出示数字3

师:谁来提一个问题

师:你们真聪明,那我要出一道难得,考考你们了

出示5+3,谁来编编?

谁来自己编一道,请另一名幼儿列算式(引导幼儿拓开思维)

三、幼儿分组编应用题

师:你们都很棒。老师带来了许多的图片和算式,请聪明宝贝发挥你的聪明才智编一编。我这里有两个要求:

1、请两个小朋友选一张图片,相互编一编,看谁编的好。

2、编完一张可以再换一张编。

3、合作完以后可以自选一张也可以去给客人老师讲一讲你编的。

活动反思:

整个活动过程通过让幼儿发现观察层层递进,每个环节发散幼儿的思维,从而让幼儿理解减法应用题的实际意义,不仅培养了幼儿的观察能力,而且还能提高了幼儿口语表达能力,在活动中幼儿表现出浓厚的兴趣,又体验了成功喜悦,充分体现了以幼儿为主的理念,然而我也发现了不足,幼儿在创编过程中,内容比较单一,有一个孩子编出来,多数的孩子都模仿他的思路创编,只有少部分幼儿创编有新意,以后要加强幼儿平时生活经验的积累。要突破幼儿单一的模式,加强在培养幼儿创新意识,自编减法应用题是在自编加法应用题的基础上进行的便于大班幼儿在模仿的基础上去创新去表达,整个活动达到了预期目标,孩子都参与在活动中,能力强的幼儿帮助能力弱的幼儿完成减法应用题的创编。

最简单的数学应用题


以下是57梯子网编辑为您整理的“最简单的数学应用题”相关内容,大家了解的范文有哪些?处理文档更快速可以节省更多的工作时间,范文的作用正在逐渐引起人们的关注。范文中的写作框架能够帮助读者更好地理解和掌握文章的核心,要了解更多有关该主题的内容建议您继续向下阅读!

最简单的数学应用题(篇1)

【活动目标】

1、在理解应用题三要素的基础上,学习口编10以内连加应用题。

2、提高幼儿动手操作能力及语言表述能力。

3、训练幼儿的倾听、分析、理解、判断等思维能力。

4、让幼儿懂得简单的数学道理。

5、让幼儿学习简单的数学题目。

【活动准备】

1、课前学会10以内加法、奖励贴纸。

2、10以内加法算式若干,场景布置成超市。

3、人手一个小篮子、10元钱,找零的钱。

【活动过程】

一、游戏“开火车”引出课题。

师:我的火车就要开,幼:几点开?老师出示一算式卡片:请你猜猜看?幼:1+6=7你的火车7点开。

游戏时速度由慢到快,由集体游戏到小组、个人游戏。

今天,小朋友们的火车开的真好,下面老师奖励你们10元钱,请你们去超市购物。要求一个区只能买一样你喜欢的东西,总数加起来不能超过10元钱。

二、游戏“逛超市”。

幼儿排队有序的去超市按要求购物。

三、口编10以内的加法应用题。

1、教师示范:今天老师也去超市购物了,我买了一只钢笔花了5元钱,我买了一个苹果花了2元钱,今天老师一共花了几元钱?小朋友来帮我一起算一算吧!你是用什么方法计算的?(我们先来想想我说了一件什么事情?先怎么样?后怎么样?出现过几次数字?最后问题是什么?)

2、引出应用题的3个条件:(边提问边在黑板上操作,记录5+2=7)

3、教师和幼儿归纳总结什么叫加法应用题?师:合起来或一共有多少的题目是加法应用题。

4、请幼儿按照所买物品编应用题。(分组讨论后由组长回答)

5、请幼儿把刚才所编的应用题用算式列出。展示幼儿的算式。

四、结合身边的事编应用题。

1、教师示范:第一组有3个女孩子,5个男孩子,请问第一组一共有多少人?

2、引导幼儿结合身边的事口编10以内的应用题。(可与家长商量讨论)并做好记录。

3、展示幼儿口编的应用题。

五、小结。

今天我们学习了口编10以内的加法应用题。我们身边还有很多东西可以编成应用题,只要你平时仔细观察就能变得更加聪明。

教学反思

通过本节课的教学活动,我从两方面谈一下:因为本班都是维吾尔族小朋友,对于汉语的表达还是有困难的,前几节课学过1-9的加法,部分幼儿有了一些基础。因为是纯汉语授课,对于我的授课一部分幼儿听起来还是有困难的,从他们的眼神中我就知道根本就不懂,只有少数幼儿可以和我配合一下,在我讲完以后,民考汉教师再进行解释,那些和我配合的幼儿进一步理解了,至于那些听不懂的幼儿,对民考汉教师的讲解的维语可以理解了,但是用汉语就根本表达不出来。所以一节课上起来还是比较困难的。

我的备课是按照教师指导用书的思路设计的,课也是按照几个环节的设计开展的,能听得懂汉语的孩子和我配合得很高兴,听不懂汉语的孩子认识一脸的茫然,总之,每次上课之前我准备一些教具来提高幼儿学习的积极性,结果在语言的障碍中“枯萎”了。

最简单的数学应用题(篇2)

1、有3个大盒子,每个大盒子内装有3个中盒子,每个中盒子内装有3个小盒子,大中小盒子共有多少个?

2、 王爷爷家养了6只兔子,其中有3只黑兔,3只白兔,每只黑兔又生了2只小兔,王爷爷家现在共有多少只兔子?

3、 白雪公主和七个小矮人吃饭,每2个人要用4只碗,一共要用几只碗?

4、 将一堆香蕉分给10个小朋友,每人分到7个还剩5个,至少再添上几个香蕉,每个小朋友就又可以分到1个香蕉了?

5、1只小猪的重量等于2只羊的重量,一只羊的重量等于4只兔子的重量,问1只猪的重量等于多少只兔的重量?3只羊的重量相当于几只兔的重量呢?

6、1只小狗的重量等于2只小兔的重量,4只小猫的重量等于2只小兔子的重量,1只小狗的重4千克,1只小猫重几千克?

7、写出下列图形所表示的数△+□=5 △+○=6 □+○=7 求△、□、○。

8、小兔+小鸭=17 小兔—小鸭=15 小兔×小鸭=16 小兔÷小鸭=16 ,求小兔=( ) 小鸭=( )

9、井底有一只蜗牛要爬出9米高的井。他每天往上爬3米以后会下滑2米,这样连续几天才能爬到井口?

10、井底有一只蜗牛要爬出9米高的井,每爬3米要3分钟时间,然后停下来歇2分钟,这样爬到井口上要多长时间?

11、1—40的数中,4出现了多少次?

12、佳佳牛奶厂搞促销活动,喝完牛奶后,可用5个空瓶换1瓶牛奶。现在小红家的客人喝25瓶牛奶。那么最开始最少买了多少瓶?

13、动物园的5个笼子里养了20只猴子,每个笼子里猴子的数量不一样,而且每个笼子都比前一个多一只,请你猜猜:每个笼子里各关了几只猴子?

14小利用7天的时间做了35道题,他每天都比前一天多做一道。这7天里,小利每天各做几道题?

15、五个连续的自然数的和是30,这五个数从小到大是怎样排列的?

最简单的数学应用题(篇3)

1.一间房间长4米,宽3米。如果每平方米铺9块地砖,那么这间房需铺几块地砖?

2.一扇防盗门高20分米,宽12分米。要给30扇这样的门涂油漆。(涂两面)一共要涂多少平方米?

3.有一块长30米,宽20米的长方形土地要铺上草皮,每块草皮的面积是9平方分米。至少要多少块这样的草皮才把这块地铺满?

4.有一块长为20米,宽为80分米的'长方形土地要铺上地砖,每块地砖的边长是50分米。至少需要多少块这样的砖才能把这块地铺满?

5.在长为8米,宽为5米的土地上截一个最大的正方形,剩余土地的面积是多少?

容积和重量问题(必考几率80%)

1.现有浓缩杨梅汁2750毫升,加上11升水后分给25个同学,每个同学可以得到多少毫升的杨梅汁饮料?

2.某超市搞优惠活动买1瓶2升装的芬达送一瓶355毫升的芬达,小雅买了5瓶2升装的芬达,她一共能得到多少毫的芬达?若分给25个小朋友喝,每人喝到多少毫升?

3.净水社每天可以生产10000升纯净水,如果每桶装19升,那么最多可以装满多少桶?

4.码头有煤370吨,如果一辆卡车一次可以装煤6吨,全部运走这些煤需要多少辆这样的卡车?

5.5辆卡车7次可以运送280吨货物,每辆卡车每次可以运送多少吨货物?

最简单的数学应用题(篇4)

1、食堂买来萝卜250千克,买来的白菜比萝卜多150千克,买来萝卜和白菜共多少千克?

2、菜市场运来2车白菜,每车装1500千克,又运来2500千克菠菜,菜市场一共运来白菜和菠菜多少千克?

3、修路队修一条路,已经修了550米,剩下的是已经修的4倍,这条路全长多少米?

4、明明有42张油票,芳芳的邮票比明明多14张。他们一共有多少张邮票?

5、校园里有水杉树24棵,松树的棵数是水杉数的3倍。水杉和松树一共有多少棵?

6、黑天鹅有35只,白天鹅的只数比黑天鹅的3倍还多8只。白天鹅有多少只?

7、红星小学三年级的同学乘四辆汽车去春游,前3辆车各坐68个同学,第4辆车坐74人,这次春游一共去了多少人?

8、一个长方形花圃的长是16米,宽是10米,王大伯要给花圃施肥,平均每平方米浇2千克营养水,这个花圃一共要浇多少千克营养水?

9、一个新教室要安装窗户玻璃。每块玻璃长50厘米,宽40厘米,每块玻璃的面积是多少平方分米?一共要装64块这样的玻璃,需要买多少平方分米的玻璃?

10、5千克黄豆可以做20千克豆腐,照这样计算,做120千克豆腐需要多少千克黄豆?

11、一块长方形的钢板,长是10米,宽是4米,每平方米重8千克,这块钢板重多少千克?

12、会议室长15米,宽8米,每平方米坐2人,这个会议室一共可以坐几人?

13、一块长方形菜地长25米,宽8米,现在把宽扩大到12米,现在长方形的面积是多少?面积比原来增加了多少?

14、给一个长5米,宽3米的房间铺地砖,如果每平方米需地砖25块,铺满这个房间需要多少块地砖?

15、一间教室的地面长8米,宽6米,用边长2分米的地砖铺地,一共需要这样的地砖多少块?

16、一个长方形与一个正方形周长相等,如果正方形的边长是18分米,长方形的长是24分米,正方形和长方形的面积各是多少?

17、一个正方形的菜地,边长是17米,每平方米可以收青菜40千克,这块地一共可以收青菜多少千克?

18、期末考试海林的三门平均分是90分,她语文得了85分,英语得了92分,她数学得了多少分?

19、李叔叔用长40米的篱笆围了一块正方形地,这块地的面积是多少平方米?

20、果园里要栽3360棵桔树,每40棵栽一行,已经栽了62行,还剩下多少行没栽?

21、向阳小学的操场是一个长方形,长100米、宽65米。小强围着操场跑了2圈,小强一共跑了多少米?

22、有学生31人,老师2人。每船限乘4人,至少要租多少条小船?

23、一副中国象棋16元,一副跳棋12元,一副围棋是一副中国象棋与一副跳棋价钱和的3倍。小明带80元,买一副围棋够吗?

24、同学们倡议捐400本图书给“手拉手”学校。一至六年级各捐了58本,还要捐多少本就达到了400本?

25、原来有30个同学,又走来15个。这些同学5人排一行,可以排几行?

最简单的数学应用题(篇5)

3+5= 4+5= 8+3=   6+5=

3+7=  6+4=  7-3=  8-2=

△△△△   □□□□□  ⊙⊙⊙⊙⊙⊙

◇◇◇◇◇◇◇   ☆☆☆☆☆☆☆☆

∧     ∧    ∧     ∧

∧    ∧     ∧      ∧

3 4   3 6   □ □    □ □

五、按从小到大的顺序排列数字字 7 9 1 4 6 3 2 5 10 8

△△△△-△△= △△

○○+○○=

△△△△△-△△△=

○○○+○=

△△△△△△-△△=

○○+○○○○=

1、小红有4朵花,小明有3朵花,小花有2朵花,三人一共有多少朵花?

2、小明买了5支铅笔,用了3支,小明还有多少支?

3、小华家有4口人,小刚家比小华家多2口人,小刚家有几口人?

最简单的数学应用题(篇6)

1、复习5以内的加法。能看图片尝试仿编5以内的加法应用题并懂得运算。

2、在看、听、想、说、做中感受合作与竞争的氛围,体验数学的魅力。

组织幼儿分成三个方队,红队(举队牌),黄队,绿队。

欢迎三个方队!接下来我们马上进入快乐数学第一关。

二、快乐数学第一关。

红黄绿队的每一位选手都要回答一道题目,每答对一题,奖励一个红苹果。

看哪一队的红苹果个数最多。

小结:第一关必答题结束,让我们来关注一下各队的红苹果得数,红队得到几个红苹果,

可以用数字几来表示?

(教师板书),大家看看哪个队的水果个数最多?

大家还会有机会的,现在我们进入今天的第二个环节——快乐数学,第二关。

教师:今天我带来了一张图片,我给它编了一段话,请你算一算,我的图上有几只小动物?

教师:花园里有两只蝴蝶,又飞来两只蝴蝶,现在花园里一共有几只蝴蝶?

2、教师:我这里还有一张图片,谁能象我一样给它编一段话,让我来算一算。考考我小问号.

(1)幼儿自由讨论,请幼儿口述。

3、我这里有三张图片,红黄绿队一张,请你们把图片编成一段话,把答案悄悄地放在心里。

4、挑战开始:红队可以选择黄队和绿队当中的一队接受挑战。

教师:你们选谁?黄队接受挑战,请听题。

5、小结:在第二关中,三队编的都很好,我给三个队都加上一个红苹果。

四、快乐数学,第三关。

1、第三关,抢答题。

我出示图片,你们用数字算出来。

2、小结:抢答环节中红队得到几个红苹果?黄队得到几个红苹果?绿队得到几个红苹果?

2、活动结束。

最简单的数学应用题(篇7)

26*3+5-(18*3-7)]/2=18

(22*2+18)/2=31

22*2-31=13

13+7=20

31-5=26

18*3-20-13=21

依次为 31、26、21、20、13

解:从小到大我们假设成①②③④⑤。

有⑤=④+5,,②=①+7,①+⑤=22×2=44个。

所以有②+④=①+7+⑤-5=44+2=46个。

①+②+④+⑤=44+46=90个

还有①+②+③=18×3=54个,③+④+⑤=26×3=78个。

③=(54+78-44-46)÷2=21个。

①=(54-21-7)÷2=13个,

②=13+7=20个。

④=(78-21-5)÷2=26个。

⑤=26+5=31个。

5.甲、乙、丙三个班向希望工程捐赠图书.已知甲班一人捐6册,有二人各捐7册,其余人各捐11册;乙班有一人捐6册,三人各捐8册,其余人各捐10册;丙班有二人各捐4册,六人各捐7册,其余人各捐9册.已知甲班捐书总数比乙班多28册,乙班比丙班多101册.各班捐书总数在400册与550册之间.问各班各有几人?

解:根据乙班8×3+6=30册,很容易看出,乙班的册数是10的倍数。

乙班捐书册数在400+101=501到550-28=522之间。

所以乙班的册数有两种可能,就是510册和520册。

当乙班捐书510时,甲班捐书538册,(538-6-7×2)÷11得不到整数,所以乙班捐书520册。

因此有乙班人数是(520-30)÷10+4=53人。

甲班有(520+28-6-7×2)÷11+3=51人。

丙班有(520-101-2×4-6×7)+8=49人。

6.某公司彩电按原价销售,每台获利润60元;现在降价销售,结果彩电销量增加了1倍,获得的总利润增加了0.5倍,则每台彩电降价多少元?

解:现在1+1=2台获得利润60×(1+0.5)=90元,每台获得利润90÷2=45元。每台彩电降价60-45=15元。

7.一件工程,甲队独做12天可以完成,甲队做3天后乙队做2天恰好完成一半,现在甲、乙两队合作若干天后,由乙队单独完成,做完后发现两段时间相等.则共用几天?

解:甲做3天完成3/12,乙每天完成(1/2-3/12)÷2=1/8。两段时间相等,说明甲用的时间是乙的1/2。所以乙用了1÷(1/12×1/2+1/8)=6天。即共用6天。

8.两个杯中分别装有浓度40%与10%的盐水,倒在一起后混合盐水浓度为30%.如果再加入300克20%的盐水,则浓度变成25%.那么原有40%的盐水多少克?

解:先给个名称好区分。"40%的盐水"称为"甲盐水","10%的盐水"称为"乙盐水","20%的盐水"称为"丙盐水"。

甲盐水和乙盐水的重量比是

(30%-10%):(40%-30%)=2:1

甲乙混合后的盐水和丙盐水的重量比是

(25%-20%):(30%-25%)=1:1

所以甲盐水和乙盐水共300克。

所以甲盐水有300÷(2+1)×2=200克。

9.甲、乙两车分别从A,B两地出发,相向而行.出发时,甲、乙的速度比是5:4,相遇后甲的速度减少20%,乙的速度增加20%,这样当甲到达B地时,乙离A地还有10千米,那么A,B两地相距几千米?

解:相遇后的速度比是5×(1-20%):4×(1+20%)=5:6。

相遇时甲行了5份,乙行了4份,

相遇后,当甲行完余下的4份时,乙行了4×6/5=4.8份。

所以每份是10÷(5-4.8)=50千米。

所以AB两地相距50×(5+4)=450千米。

10.小李和小张同时开始制作同一种零件,每人每分钟能制作1个零件,但小李每制作3个零件要休息1分钟,小张每制作4个零件休息1.5分钟.现在他们要共同完成制作300个零件的任务,需要几分钟?

解:小李4分钟做3个,小张5.5分钟做4个。3/4>4/5.5,所以小李速度快。

小李做300÷2=150个零件,需要150÷3×4=200分钟。

因为200÷5.5=36……2,所以小张200分钟做了36×4+2=146个零件。

剩下的300-150-146=4个零件,刚好够2分钟。

所以,需要200+2=202分钟。

最简单的数学应用题(篇8)

一、各种数量关系。

简单应用题所涉及的数量关系除了和、差、积、商以外,还包括以下常见的数量关系:

收入-支出=结余 单价×数量=总价 速度×时间=路程

单产量×数量=总产量 工效×时间=工作总量 本金×利率×时间=利息

二、基本训练

A组

1、填空。

(( )、( )、( )四种。

(2)已知一辆汽车行驶的速度和时间,可以求出( ),要想求这辆汽车行驶的速度必须知道( )和( )。

(3)要计算在银行存款的利息,已知本金是多少,还要知道( )和( )。

(4)知道核桃树的棵树和收核桃的千克数,求每棵核桃树的产量,是求( )的题目。

(5)已知3只奶羊一年可产奶2340千克,可以求出( )。

2、解答下列应用题。

(1)一条绳子长35米,用去14.75米,还剩多少米?

(2)一辆汽车0.5小时行驶25千米,1小时行驶多少千米?

(3)运送一批货物,已运走了2/5,还剩几分之几?

(4)某班有学生50人,今天的出勤率是96%,今天出勤的有多少人?

(5)果园里有桃树85棵,梨树的棵数正好是桃树的4倍。梨树有多少棵?

(6)一条水渠总长1200米,已经修了450米,再修多少米就可以完工了?

(7)学校买回18个小足球,共用去1890元,每个小足球多少元?

(8)在六一班50个学生中,有48个同学参加了各种“兴趣小组”活动。参加“兴趣小组”活动的占全班人数的百分之几?

(9)工程队修一段公路,已经修了8.4千米,正好占全长的80%,这段公路全长多少千米?

B组

1、按要求填空。

一种服装,原价每套85元,现价是原价的'4/5,现在每套多少元?

分析:

(( ),所求问题是( )。

(2)已知这种服装原价85元,现价是原价的 4/5,求现价是多少元,就是求( )的 4/5是多少。

(3)求一个数的几分之几是多少用( )法计算。

2、要求下列问题需要知道哪两个条件。

(1)六(1)班一共有学生多少人? (2)六(1)班男生比女生多多少人?

(3)果园里桃树比梨树少多少棵? (4)五年级平均每人为灾区捐款多少元?

(5)汽车平均每小时行驶多少千米? (6)合唱队人数是舞蹈队人数的多少倍?

(7)五年级捐款数是六年级捐款数的几分之几?

(8)剩下的书还需要多少小时能装订完?(9)小明几分可以从家走到学校?

(10)这堆煤实际烧了多少天?

3、根据下面各题的条件,把有关的数量关系补充完整。

(1)学校舞蹈队人数是合唱队人数的2/5。

( )÷( )=2/5 ( )○( )=舞蹈队人数

( )○ ( )=合唱队人数

(2)实际完成了计划的125%。

( )÷( )=125% ( )○125%=实际产量

( )○125%=计划产量

4、某小学计划为“希望工程”捐款700元,实际捐款840元。实际捐款是计划的百分之几?

C组

1、补充条件再解答。

(1)苹果比梨少15千克, ,梨有多少千克?

(2)一批货物,用去4.5 吨, ,这批货物原有多少吨?

(3)五一班男生人数是女生人数的3/5, ,男生有多少人?

(4)鸡是鸭的2/3, ,鸡有多少只?

(5)在“文明礼貌月”活动中,五年级做好事75件, ,两个年级一共做好事多少件?

2、(1)一台挖土机每小时挖土60吨,8小时可以挖多少吨?

最简单的数学应用题(篇9)

1. 甲、乙、丙三人在A、B两块地植树,A地要植900棵,B地要植1250棵.已知甲、乙、丙每天分别能植树24,30,32棵,甲在A地植树,丙在B地植树,乙先在A地植树,然后转到B地植树.两块地同时开始同时结束,乙应在开始后第几天从A地转到B地?

总棵数是900+1250=2150棵,每天可以植树24+30+32=86棵

需要种的天数是2150÷86=25天

甲25天完成24×25=600棵

那么乙就要完成900-600=300棵之后,才去帮丙

即做了300÷30=10天之后 即第11天从A地转到B地。

2. 有三块草地,面积分别是5,15,24亩.草地上的草一样厚,而且长得一样快.第一块草地可供10头牛吃30天,第二块草地可供28头牛吃45天,问第三块地可供多少头牛吃80天?

这是一道牛吃草问题,是比较复杂的牛吃草问题。

把每头牛每天吃的草看作1份。

因为第一块草地5亩面积原有草量+5亩面积30天长的草=10×30=300份

所以每亩面积原有草量和每亩面积30天长的草是300÷5=60份

因为第二块草地15亩面积原有草量+15亩面积45天长的草=28×45=1260份

所以每亩面积原有草量和每亩面积45天长的草是1260÷15=84份

所以45-30=15天,每亩面积长84-60=24份

所以,每亩面积每天长24÷15=1.6份

所以,每亩原有草量60-30×1.6=12份

第三块地面积是24亩,所以每天要长1.6×24=38.4份,原有草就有24×12=288份

新生长的每天就要用38.4头牛去吃,其余的牛每天去吃原有的草,那么原有的草就要够吃80天,因此288÷80=3.6头牛

所以,一共需要38.4+3.6=42头牛来吃。

两种解法:

解法一:

设每头牛每天的吃草量为1,则每亩30天的总草量为:10*30/5=60;每亩45天的总草量为:28*45/15=84那么每亩每天的新生长草量为(84-60)/(45-30)=1.6每亩原有草量为60-1.6*30=12,那么24亩原有草量为12*24=288,24亩80天新长草量为24*1.6*80=3072,24亩80天共有草量3072+288=3360,所有3360/80=42(头)

解法二:10头牛30天吃5亩可推出30头牛30天吃15亩,根据28头牛45天吃15木,可以推出15亩每天新长草量(28*45-30*30)/(45-30)=24;15亩原有草量:1260-24*45=180;15亩80天所需牛180/80+24(头)24亩需牛:(180/80+24)*(24/15)=42头

3. 某工程,由甲、乙两队承包,2.4天可以完成,需支付1800元;由乙、丙两队承包,3+3/4天可以完成,需支付1500元;由甲、丙两队承包,2+6/7天可以完成,需支付1600元.在保证一星期内完成的前提下,选择哪个队单独承包费用最少?

甲乙合作一天完成1÷2.4=5/12,支付1800÷2.4=750元

乙丙合作一天完成1÷(3+3/4)=4/15,支付1500×4/15=400元

甲丙合作一天完成1÷(2+6/7)=7/20,支付1600×7/20=560元

三人合作一天完成(5/12+4/15+7/20)÷2=31/60,

三人合作一天支付(750+400+560)÷2=855元

甲单独做每天完成31/60-4/15=1/4,支付855-400=455元

乙单独做每天完成31/60-7/20=1/6,支付855-560=295元

丙单独做每天完成31/60-5/12=1/10,支付855-750=105元

所以通过比较

选择乙来做,在1÷1/6=6天完工,且只用295×6=1770元

4. 一个圆柱形容器内放有一个长方形铁块.现打开水龙头往容器中灌水.3分钟时水面恰好没过长方体的顶面.再过18分钟水已灌满容器.已知容器的高为50厘米,长方体的高为20厘米,求长方体的底面面积和容器底面面积之比.

把这个容器分成上下两部分,根据时间关系可以发现,上面部分水的体积是下面部分的18÷3=6倍

上面部分和下面部分的高度之比是(50-20):20=3:2

所以上面部分的底面积是下面部分装水的底面积的6÷3×2=4倍

所以长方体的底面积和容器底面积之比是(4-1):4=3:4

独特解法:

(50-20):20=3:2,当没有长方体时灌满20厘米就需要时间18*2/3=12(分),

所以,长方体的体积就是12-3=9(分钟)的水量,因为高度相同,

所以体积比就等于底面积之比,9:12=3:4

5. 甲、乙两位老板分别以同样的.价格购进一种时装,乙购进的套数比甲多1/5,然后甲、乙分别按获得80%和50%的利润定价出售.两人都全部售完后,甲仍比乙多获得一部分利润,这部分利润又恰好够他再购进这种时装10套,甲原来购进这种时装多少套?

把甲的套数看作5份,乙的套数就是6份。

甲获得的利润是80%×5=4份,乙获得的利润是50%×6=3份

甲比乙多4-3=1份,这1份就是10套。

所以,甲原来购进了10×5=50套。

6. 有甲、乙两根水管,分别同时给A,B两个大小相同的水池注水,在相同的时间里甲、乙两管注水量之比是7:5.经过2+1/3小时,A,B两池中注入的水之和恰好是一池.这时,甲管注水速度提高25%,乙管的注水速度不变,那么,当甲管注满A池时,乙管再经过多少小时注满B池?

把一池水看作单位“1”。

由于经过7/3小时共注了一池水,所以甲管注了7/12,乙管注了5/12。

甲管的注水速度是7/12÷7/3=1/4,乙管的注水速度是1/4×5/7=5/28。

甲管后来的注水速度是1/4×(1+25%)=5/16

用去的时间是5/12÷5/16=4/3小时

乙管注满水池需要1÷5/28=5.6小时

还需要注水5.6-7/3-4/3=29/15小时

即1小时56分钟

继续再做一种方法:

按照原来的注水速度,甲管注满水池的时间是7/3÷7/12=4小时

乙管注满水池的时间是7/3÷5/12=5.6小时

时间相差5.6-4=1.6小时

后来甲管速度提高,时间就更少了,相差的时间就更多了。

甲速度提高后,还要7/3×5/7=5/3小时

缩短的时间相当于1-1÷(1+25%)=1/5

所以时间缩短了5/3×1/5=1/3

所以,乙管还要1.6+1/3=29/15小时

再做一种方法:

①求甲管余下的部分还要用的时间。

7/3×5/7÷(1+25%)=4/3小时

②求乙管余下部分还要用的时间。

7/3×7/5=49/15小时

③求甲管注满后,乙管还要的时间。

49/15-4/3=29/15小时

7. 小明早上从家步行去学校,走完一半路程时,爸爸发现小明的数学书丢在家里,随即骑车去给小明送书,追上时,小明还有3/10的路程未走完,小明随即上了爸爸的车,由爸爸送往学校,这样小明比独自步行提早5分钟到校.小明从家到学校全部步行需要多少时间?

爸爸骑车和小明步行的速度比是(1-3/10):(1/2-3/10)=7:2

骑车和步行的时间比就是2:7,所以小明步行3/10需要5÷(7-2)×7=7分钟

所以,小明步行完全程需要7÷3/10=70/3分钟。

8. 甲、乙两车都从A地出发经过B地驶往C地,A,B两地的距离等于B,C两地的距离.乙车的速度是甲车速度的80%.已知乙车比甲车早出发11分钟,但在B地停留了7分钟,甲车则不停地驶往C地.最后乙车比甲车迟4分钟到C地.那么乙车出发后几分钟时,甲车就超过乙车.

乙车比甲车多行11-7+4=8分钟。

说明乙车行完全程需要8÷(1-80%)=40分钟,甲车行完全程需要40×80%=32分钟

当乙车行到B地并停留完毕需要40÷2+7=27分钟。

甲车在乙车出发后32÷2+11=27分钟到达B地。

即在B地甲车追上乙车。

9. 甲、乙两辆清洁车执行东、西城间的公路清扫任务.甲车单独清扫需要10小时,乙车单独清扫需要15小时,两车同时从东、西城相向开出,相遇时甲车比乙车多清扫12千米,问东、西两城相距多少千米?

甲车和乙车的速度比是15:10=3:2

相遇时甲车和乙车的路程比也是3:2

所以,两城相距12÷(3-2)×(3+2)=60千米

10. 今有重量为3吨的集装箱4个,重量为2.5吨的集装箱5个,重量为1.5吨的集装箱14个,重量为1吨的集装箱7个.那么最少需要用多少辆载重量为4.5吨的汽车可以一次全部运走集装箱?

我的解法如下:(共12辆车)

本题的关键是集装箱不能像其他东西那样,把它给拆散来装。因此要考虑分配的问题。

3吨(4个)2.5吨(5个)1.5吨(14个)1吨(7个)车的数量

4个 4个 4辆

2个2个 2辆

6个 6个3辆

最简单的数学应用题(篇10)

假设你站在甲、乙两地之间的某个位置,想乘坐出租车到乙地去。你看见一辆空车远远地从甲地驶来,而此时整条路上并没有别人与你争抢空车。我们假定车的行驶速度和人的步行速度都是固定不变的,并且车速大于人速。为了更快地到达目的地,你应该迎着车走过去,还是顺着车的方向往前走一点?

在各种人多的场合下提出这个问题,此时大家的观点往往会立即分为鲜明的两派,并且各有各的道理。有人说,由于车速大于人速,我应该尽可能早地上车,充分利用汽车的速度优势,因此应该迎着空车走上去,提前与车相遇嘛。另一派人则说,为了尽早到达目的地,我应该充分利用时间,马不停蹄地赶往目的地。因此,我应该自己先朝目的地走一段路,再让出租车载我走完剩下的路程。

其实答案出人意料的简单,两种方案花费的时间显然是一样的。只要站在出租车的角度上想一想,问题就变得很显然了:不管人在哪儿上车,出租车反正都要驶完甲地到乙地的全部路程,因此你到达乙地的时间总等于出租车驶完全程的时间,加上途中接人上车可能耽误的时间。从省事儿的角度来讲,站在原地不动是最好的方案!

不过不少人都找到了这个题的一个:在某些极端情况下,顺着车的方向往前走可能会更好一些,因为你或许会直接走到终点,而此时出租车根本还没追上你!

最简单的数学应用题(篇11)

设计意图:

我们班的孩子已经掌握了10以内的加减法运算和看图列算式的能力。为了发展孩子们的口语表达能力,培养幼儿灵活运用知识的的能力和思维的灵活性,我给孩子们设计了一个自编口述应用题的活动。

首先,我用直观的教具,展示出了一个故事情境(农民伯伯的红萝卜),让幼儿接触应用题,知道什么是应用题和怎么编应用题,学习编应用题的方法。然后在教师的带领下,结合图片尝试自编口述应用题,再过渡到根据算式编加法和减法的应用题,最后每个幼儿一份算式题卡,每个孩子根据自己的算式编应用题。

我的活动重点在于,引导幼儿自编口述应用题,难点是,编应用题最后要留一个问题,答案不能说出来。

活动目标:

1、能根据已有经验和范例,知道加减法应用题讲一件事情,说2个数字,问一个问题。

2、学习根据图片和算式自编应用题。

3、增加口语表达能力和思维的灵活性,喜欢数学。

4、有兴趣参加数学活动。

5、了解数字在日常生活中的应用,初步理解数字与人们生活的关系。

活动准备:

农民伯伯、红萝卜和小白兔;算式题卡若干;"问号"一个;PPT。

活动过程:

一、准备活动:拍手游戏

T:我来问,你来答,

5可以分成1和几?(5可以分成1和4)

5可以分成2和几?(5可以分成2和3)

5可以分成2+几?(5可以分成2+3)

二、激趋引入:出题考考你

T:嗯,小朋友们都很聪明,那老师就要来考考大家了,看看我们大七班的孩子是不是真的很厉害哦。仔细看仔细听。

1、故事情境1(T边讲边出示教具):

农民伯伯的菜园里呀,本来有3颗红萝卜,后来又长出了2颗红萝卜,请你帮农民伯伯算一算,现在菜园里一共有几颗红萝卜呢?

小朋友有没有注意,老师刚刚是怎么提问的?(强调"一共")

一共有几颗红萝卜呢?

T提问:

你怎么知道的?怎么算的呀? 幼:3+2=5

你为什么选择加法呢? 幼:因为又长出了2颗,数量变多了,所以用加法。

老师把这个算式找出来。把3+2=5贴在黑板上。

2、故事情境2:

现在菜园里有5个红萝卜,农民伯伯拔起了一颗红萝卜,把它送给了小兔子,请你帮农民伯伯算一算,现在菜园里还剩下几颗红萝卜呢?

老师刚刚又是怎么提问的?(强调"还剩下")

还剩下几颗红萝卜呀?

T提问:

你又是怎么算的呢?为什么选择减法呢?5-1=4

为什么选择减法呢? 因为拔起了一颗,送给了小兔子,数量变少了,所以用减法。

老师把这个算式找出来。把5-1=4 贴在黑板上。

T总结:

像刚刚这两个小故事一样,讲一件事情,出现2个数字,最后一定会留一个问题的活动,我们就叫做编应用题,你们都会编应用题了吗?

三、看图编题

T:你们都会了嘛?接下来我们就一起来试试吧!

1、出示PPT第一张图片,小鸟图。

我们先来看看,图片上都有什么?小鸟,这两只小鸟的姿势,好像是刚飞来的。

现在我想把这幅图编成一个应用题,记住一定要留个问题给别人哦。(如果没人,教师先;如果有幼儿,请一个孩子,)

老师来编编看。我的题目是:树枝上本来有三只小鸟,后来又飞来了2只小鸟,现在树枝上一共有几只小鸟呢?

让幼儿一起回答。5。算式是3+2=5

最后的问题,老师是怎么提问的呢?老师在这里用了"一共",看来我们的加法应用题一般用"一共"来提问。

2、出示PPT第二张图片,夹子图。

图片上说的一件什么事?(请一个幼儿回答,教师编)

本来有3个夹子,后来破了1个夹子,现在还剩下几个夹子呢?

最后的问题老师是怎么提问的?老师在这里用了"还剩下",看来我们的减法应用题一般用"还剩下"来提问。

3、T:小朋友们,现在要你们来编应用题喽。请你们在三幅图里面选择一幅图,看看图片上都有什么,你来编一道应用题。

出示PPT 第三张,加法应用题三幅图。

请三个幼儿发言。

小朋友都很棒,刚刚我们编的应用题都是加法的,不知道减法的你们会不会呢?出示PPT第四张,减法应用题。

请幼儿发言。

四、算式编应用题

T:小朋友们真厉害,都会看着图片编应用题了。现在呀,我们换个玩法。老师这里有一个算式,请小朋友们看着算式编应用题。你来问,我们大家来回答。

出示加法算式卡。请幼儿编。

出示减法算式卡。请幼儿编。

小朋友们一定要编和别人不一样的应用题哦!看看谁的小脑袋转的最快。

五、我编你算,每人一份题卡

你们都会编应用题了嘛?现在啊老师会给每个小朋友一个算式,听清老师的要求,就像刚刚一样,请你编一道这个算式的应用题,把你的应用题说给身边的好朋友听,让好朋友来回答并写上算式的答案。

活动反思:

在整个教学活动中,“应用题”相对于幼儿来说,是一个较为难理解又难掌握的领域,如何让幼儿们在提倡的“玩中学”这一模式中掌握知识点呢?我将此作为本次课堂设计的一个难点。以动画人物的形象激发幼儿的兴趣,让幼儿随着喜爱的动画人物进入我所创设的环境中,让幼儿们在与动画人物相互交流的基础上,进行知识性的学习。在编应用题时,小朋友基本能大声的来编,可能是父母在场的关系,小朋友积极举手,认真的投入到活动中。在数学练习时,父母们都走去看自己的宝宝做练习,这个环节有点乱,可是家长们的心情可以理解,所以这个环节在父母们的一起参与下结束了。

最简单的数学应用题(篇12)

在独立探索和合作探究的基础上,让学生用自己的语言结合一些外显的动作行为阐述自己的探究过程和得出的结论,使教师以及学生相互间了解他们真实1的思维活动,及时肯定其中的闪光点予以表扬和鼓励,使他们体验成功的愉悦,产生强大的内部动力以争取新的更大的成功。同时,因为任何真正的认识都是以主体已有知识和经验为基础的,由于受到知识经验欠缺等限制,总会出现一些错误,但我们应知道,其中一定具有内在的合理性,我们不应对此采取简单否定的态度。而应鼓励引导学生进行积极的交流和自我检查、自我反省,逐步体验成功。我们必须坚信:学生学习数学通过自身的情感体验和主动参与,必能不断增强他们的自信。

同时,研究信息、主动探究是学生发散思维的过程,为使学生主体的认知结构更趋向稳定和加强,使主体对知识的理解更加透彻和深刻,因此,在充分发散的基础上,教师应诊视学生思维过程中的每一个成功点所蕴含的数学思想及解题策略,并尽可能及时地让学生表达出来,及时地总结、归纳,使这些数学思想及解题策略及时纳入到学生的数学认知结构中去。

最简单的数学应用题模板10篇


工作中常常需要撰写不同类型的文档,每当不知道怎么去写时范文就像一位人生导师。背诵范文可以帮助自己更好地理解文章结构,57梯子网的编辑决定分享一篇非常有用的“最简单的数学应用题模板”给大家,希望您能喜欢本文也请将其珍藏!

最简单的数学应用题模板 篇1

和差问题的公式

(和+差)÷2=大数

(和-差)÷2=小数

和倍问题

和÷(倍数-1)=小数

小数×倍数=大数

(或者 和-小数=大数)

差倍问题

差÷(倍数-1)=小数

小数×倍数=大数

(或 小数+差=大数)

植树问题

1 非封闭线路上的植树问题主要可分为以下三种情形:

(1)如果在非封闭线路的两端都要植树,那么:

株数=段数+1=全长÷株距-1

全长=株距×(株数-1)

株距=全长÷(株数-1)

(2)如果在非封闭线路的一端要植树,另一端不要植树,那么:

株数=段数=全长÷株距

全长=株距×株数

株距=全长÷株数

(3)如果在非封闭线路的两端都不要植树,那么:

株数=段数-1=全长÷株距-1

全长=株距×(株数+1)

株距=全长÷(株数+1)

2 封闭线路上的植树问题的数量关系如下

株数=段数=全长÷株距

全长=株距×株数

株距=全长÷株数

盈亏问题

(盈+亏)÷两次分配量之差=参加分配的份数

(大盈-小盈)÷两次分配量之差=参加分配的份数

(大亏-小亏)÷两次分配量之差=参加分配的份数

相遇问题

相遇路程=速度和×相遇时间

相遇时间=相遇路程÷速度和

速度和=相遇路程÷相遇时间

追及问题

追及距离=速度差×追及时间

追及时间=追及距离÷速度差

速度差=追及距离÷追及时间

流水问题

(1)一般公式:

顺流速度=静水速度+水流速度

逆流速度=静水速度-水流速度

静水速度=(顺流速度+逆流速度)÷2

水流速度=(顺流速度-逆流速度)÷2

(2)两船相向航行的`公式:

甲船顺水速度+乙船逆水速度=甲船静水速度+乙船静水速度

(3)两船同向航行的公式:

后(前)船静水速度-前(后)船静水速度=两船距离缩小(拉大)速度

浓度问题

溶质的重量+溶剂的重量=溶液的重量

溶质的重量÷溶液的重量×100%=浓度

溶液的重量×浓度=溶质的重量

溶质的重量÷浓度=溶液的重量

利润与折扣问题

利润=售出价-成本

利润率=利润÷成本×100%=(售出价÷成本-1)×100%

涨跌金额=本金×涨跌百分比

折扣=实际售价÷原售价×100%(折扣

利息=本金×利率×时间

税后利息=本金×利率×时间×(1-5%)

工程问题

(1)一般公式:

工作效率×工作时间=工作总量

工作总量÷工作时间=工作效率

工作总量÷工作效率=工作时间

(2)用假设工作总量为“1”的方法解工程问题的公式:

1÷工作时间=单位时间内完成工作总量的几分之几

1÷单位时间能完成的几分之几=工作时间

最简单的数学应用题模板 篇2

1、李红早晨7点从家出发去学校,她走了2分钟后发现忘带语文书了,她立刻回家拿了书又立即往学校赶,这样她到校时是7点20分。如果她每分钟走80米,李红家离学校有多远?

2、一辆货车从甲城往乙城运货,每小时行42千米,预计6小时到达。但行到一半时,由于机器出了故障,用了1小时进行修理,如果仍要求在预计时间到达乙地,余下的路程必须每小时行多少千米?

3、一辆卡车上午10时从南京出发开往浙江,原计划每小时行驶60千米,下午1时到达,但实际晚点2小时。这辆汽车实际每小时行驶多少千米?

4、明明家离学校有200米,他走了4分钟,如果用同样的速度,从学校到少年宫明明走了12分钟。学校到少年宫有多少米?

5、小李骑摩托车以每分钟650米的速度从甲村到乙村去办事,他骑出5分钟后,因忘记带东西立即返回去拿,然后又立即出发去乙村,这样他一共用了25分钟才到达乙村。两个村相距有多少米?

6、一列火车早上5时从甲地开往乙地,下午1时可以到达。开汽车从甲地到乙地要多用2小时,如果汽车每小时行52千米,甲乙两地相距多少千米?

7、张青平时都用每分钟66米的速度从家出发去上学,这样他10分钟就能到学校。有一天他走到一半时,遇到一个熟人讲了2分钟话,如果他仍要按时到校,余下的路程每分钟要走多少米?

8、小明和小红的家在同一条大街的两头。如果小明每分钟走40米,小红每分钟走30米,他们两人约好同时出发,相向而行,经过3分钟两人相遇。他们两家相距多远?

9、一列客车和一列火车分别从两座城市同时出发,相向而行,客车每小时行45千米,火车每小时行35千米,经过8小时,两车在途中相遇。求:两座城市相距多远?

10、一架飞机以每小时420千米的速度从A城出发,飞向B城。一小时后,另一架飞机以每小时小时460千米的速度从B城飞往A城,经过3小时遇到从A城飞来的飞机。AB两城相距多少千米?

11、小红和小明从相距1500米的两地同时出发,相向而行,小红每分钟走55米,小明每分钟比小红多行15米。经过10分钟后,两人相遇了吗?

12、敌舰在我军舰前面以每分钟120米的速度逃跑,我军舰以每分钟180米的速度在后面追,20分钟后追上敌舰。问:一开始敌舰在我军舰前多少米?

13、敌舰在我军舰前1500米处逃跑,我军舰在后面追。敌舰每分钟行150米,我军舰每分钟行180米,多少分钟才能追上?

14、小丽和小张都从东村往西村走,小丽用每分钟120米的速度先走了5分钟后,小张才用每分钟150的速度出发,结果两人同时到达。东西两村相距多远?

15、小红和小明都从甲村到乙村去办事,小红以每分120米的速度先走了一会,小明以每分140米的速度在后面追,用5分钟就追上了。小红先走了多少米?

16、甲飞机每小时飞行400千米,乙飞机每小时飞行430千米。它们同时从A城飞往B城,4小时后它们相隔多少千米?

17、一辆卡车在一辆轿车前52千米处以每小时36千米的速度开往甲地。这辆轿车每小时行40千米,多少小时后才能追上卡车?

22、夜行军时,甲队同学由于帮助受伤的同学,落在了乙队同学后面150米,乙队同学仍以每分钟80米的速度前进。老师要求甲队同学以每分钟110米的速度跑步追及,几分钟可以追上乙队?

23、一辆汽车以每小时30千米的速度从甲地开往乙地,开出4小时后,一列火车以每小时90千米的速度从甲地开往乙地,结果同时到达。甲乙两地相距多远?

24、上海路小学有一个300米的环形跑道。洋洋和宁宁同时从起跑线起跑,洋洋每秒跑6米,宁宁每秒跑4米,多少秒后洋洋能追上宁宁?这时两人各跑了多少米?

最简单的数学应用题模板 篇3

221. 瓶中装有浓度为15%的酒精溶液1000克.现在又分别倒入100克和400克的A,B两种酒精溶液,瓶里的浓度变成了14%.已知A种酒精溶液是B种酒精溶液浓度的2倍.那么A种酒精溶液的浓度是多少?

三种混合后溶液重1000+100+400=1500克,含酒精14%×1500=210克,原来含酒精15%×1000=150克,说明AB两种溶液共含酒精210-150=60克。

由于A的浓度是B的2倍,因此400克B溶液的酒精含量相当于400÷2=200克A溶液酒精的含量。所以A溶液的浓度是60÷(100+200)=20%。

222. 某商店分别花同样多的钱,购进甲、乙、丙三种不同的糖果.已知甲、乙、丙三种糖果每千克的价格分别是9.60元、16元、18元.如果把这三种糖果混合成什锦糖,按20%的利润来定价,那么这种什锦糖每千克定价是多少元?

3÷(1/9.6+1/16+1/18)×(1+20%)=16.2元

223. 甲地到乙地都是坡路,有上坡也有下坡.某人骑自行车往返甲、乙两地共用4.5小时,若已知此人上坡时速度为12千米/小时,下坡速度为18千米/小时,那么甲、乙两地全长多少?

去是上坡返回就是下破,因此往返36千米共需要36÷12+36÷18=5小时,所以1小时可以往返36÷5=7.2千米。4.5小时可以往返7.2×4.5=32.4千米。

224. 一项工程,甲一人需1小时36分完成,甲、乙二人合作要1小时完成.现在由甲一人完成1/12以后,甲、乙二人一起干,但因途中甲休息,全部工作用了1小时38分完成,那么由乙单独做那部分占全部工程的几分之几?

解:乙1小时做的相当于甲36分钟做的,乙和甲的工效比是36:60=3:5。

甲做1/12用了1/12×96=8分钟。

后来用了98-8=90分钟,如果合做90分钟就要完成90÷60=3/2,实际少完成了3/2-(1-1/12)=7/12,说明甲休息这段时间可以做7/12。

这段时间就是乙单独做的,能完成7/12×3/5=7/20。

225. 设A,B,C三人沿同一方向,以一定的速度绕校园一周的时间分别是6、7、11分.由开始点A出发后,B比A晚1分钟出发,C比B晚5分钟出发,那么A,B,C第一次同时通过开始出发的地点是在A出发后几分钟?

从条件可以知道,C出发时,A刚好行了5+1=6分钟,即一圈,也就是说,A和C再次同时经过出发点时,是6×11=66的倍数分钟后。

由于B还需要7-5=2分钟才能通过,说明要满足66的倍数除以7余2分钟。当66×3=198分钟时,198÷7=28……2分钟,满足条件。

因此ABC第一次同时通过出发地点是A出发后6+198=204分钟的时候。

226. 某班同学分成若干组去植树,若每组植树N棵,且N为质数,则剩下树苗20棵,若每组植树9棵,则还缺少2棵,这个班的同学共分成几组?

解:可以看出N是小于9的质数,相差20+2=22。

说明组数是22的约数,9-N也是22的约数。

9-N小于11,所以9-N=2。

所以组数就是22÷2=11组。

227. 学校举行计算机汉字输入技能竞赛,原计划评选出一等奖15人,二等奖20人,现将一等奖中的后5人调整为二等奖,这样一等奖获得者的平均速度提高了8字/分,二等奖获得者平均速度提高了6字/分,那么原来一等奖平均速度比二等奖平均速度多多少?

原来一等奖的平均分比这5人的平均分高8×(15-5)÷5=16字

原来二等奖的平均分比这5人的平均分低6×(20+5)÷5=30字

那么原来一等奖的平均分比二等奖高16+30=46字

228. 红光农场原定9时来车接601班同学去劳动,为了争取时间,8时同学们就从学校步行向农场出发,在途中遇到准时来接他们的汽车,于是乘车去农场,这样比原定时间早到12分钟.汽车每小时行48千米,同学们步行的速度是每小时几千米?

学生步行的路程,汽车需要12÷2=6分钟,说明是在9:00前6分钟接到学生,即8:54分,说明学生行了54分钟。所以汽车的速度是步行的54÷6=9倍,因此步行的速度是每小时行48÷9=16/3千米。

229. 甲、乙两地公路长74千米,8:15一辆汽车从甲地到乙地,半个小时后,又有一辆同样速度的汽车从甲地开往乙地.王叔叔8:25从乙地骑摩托车出发去甲地,在差5分不到9点时,他遇到了第一辆汽车,9:16遇到第二辆汽车,王叔叔骑摩托车的速度是多少?

根据题意,汽车40分和摩托车30分共行74千米,汽车31分和摩托车51分共行74千米。

可以知道汽车40-31=9分钟相当于摩托车51-30=21分钟行的。

可以得到摩托车行完需要40÷9×21+30=370/3分钟。

所以摩托车小时行74÷370/3×60=36千米

230. 在底面边长为60厘米的正方形的一个长方体的容器里,直立着一个长1米,底面为正方形,边长15厘米的四棱柱铁棍.这时容器里的水半米深.现在把铁棍轻轻地向正上方提起24厘米,露出水面的四棱柱切棍浸湿部分长多少厘米?

减少24厘米的铁棍的体积,水面就要下降24×15×15÷(60×60)=1.5厘米。所以露在水面的有1.5+24=25.5厘米。

最简单的数学应用题模板 篇4

1、简单应用题

(1) 简单应用题:

只含有一种基本数量关系,或用一步运算解答的应用题,通常叫做简单应用题。

(2) 解题步骤:

a

审题理解题意:了解应用题的内容,知道应用题的条件和问题。读题时,不丢字不添字边读边思考,弄明白题中每句话的意思。也可以复述条件和问题,帮助理解题意。

b

选择算法和列式计算:这是解答应用题的中心工作。从题目中告诉什么,要求什么着手,逐步根据所给的条件和问题,联系四则运算的含义,分析数量关系,确定算法,进行解答并标明正确的单位名称。

c 检验:就是根据应用题的条件和问题进行检查看所列算式和计算过程是否正确,是否符合题意。如果发现错误,马上改正。

d 答案:根据计算的结果,先口答,逐步过渡到笔答。

(3) 解答加法应用题:

a 求总数的应用题:已知甲数是多少,乙数是多少,求甲乙两数的和是多少。

b 求比一个数多几的数应用题:已知甲数是多少和乙数比甲数多多少,求乙数是多少。

(4) 解答减法应用题:

a 求剩余的应用题:从已知数中去掉一部分,求剩下的部分。

b 求两个数相差的多少的应用题:已知甲乙两数各是多少,求甲数比乙数多多少,或乙数比甲数少多少。

c 求比一个数少几的数的应用题:已知甲数是多少,,乙数比甲数少多少,求乙数是多少。

(5) 解答乘法应用题:

a 求相同加数和的应用题:已知相同的加数和相同加数的个数,求总数。

b 求一个数的几倍是多少的应用题:已知一个数是多少,另一个数是它的几倍,求另一个数是多少。

(6) 解答除法应用题:

a 把一个数平均分成几份,求每一份是多少的应用题:已知一个数和把这个数平均分成几份的,求每一份是多少。

b 求一个数里包含几个另一个数的应用题:已知一个数和每份是多少,求可以分成几份。

c 求一个数是另一个数的的几倍的应用题:已知甲数乙数各是多少,求较大数是较小数的几倍。

d 已知一个数的几倍是多少,求这个数的应用题。

(7)常见的数量关系:

总价= 单价×数量

路程= 速度×时间

工作总量=工作时间×工效

总产量=单产量×数量

 2、复合应用题

(1)有两个或两个以上的基本数量关系组成的。

用两步或两步以上运算解答的应用题,通常叫做复合应用题。

(2)含有三个已知条件的两步计算的应用题。

求比两个数的和多(少)几个数的应用题。

比较两数差与倍数关系的应用题。

(3)含有两个已知条件的两步计算的应用题。

已知两数相差多少(或倍数关系)与其中一个数,求两个数的和(或差)。

已知两数之和与其中一个数,求两个数相差多少(或倍数关系)。

(4)解答连乘连除应用题。

(5)解答三步计算的应用题。

(6)解答小数计算的应用题:

小数计算的加法、减法、乘法和除法的应用题,他们的数量关系、结构、和解题方式都与正式应用题基本相同,只是在已知数或未知数中间含有小数。

3、典型应用题

具有独特的结构特征的和特定的解题规律的复合应用题,通常叫做典型应用题。

(1)平均数问题:

平均数是等分除法的发展。

解题关键:在于确定总数量和与之相对应的总份数。

算术平均数:已知几个不相等的同类量和与之相对应的份数,求平均每份是多少。数量关系式:数量之和÷数量的个数=算术平均数。

加权平均数:已知两个以上若干份的平均数,求总平均数是多少。

数量关系式 (部分平均数×权数)的总和÷(权数的和)=加权平均数。

差额平均数:是把各个大于或小于标准数的部分之和被总份数均分,求的是标准数与各数相差之和的平均数。

数量关系式:(大数-小数)÷2=小数应得数 最大数与各数之差的和÷总份数=最大数应给数

最大数与个数之差的和÷总份数=最小数应得数。

例:一辆汽车以每小时 100 千米 的速度从甲地开往乙地,又以每小时 60 千米的速度从乙地开往甲地。求这辆车的平均速度。

分析:求汽车的平均速度同样可以利用

公式。此题可以把甲地到乙地的路程设为“ 1 ”,则汽车行驶的总路程为“ 2 ”,从甲地到乙地的速度为100 ,所用的时间为,汽车从乙地到甲地速度为

60 千米 ,所用的时间是 ,汽车共行的时间为 + = , 汽车的平均速度为2 ÷ =75 (千米)

(2)归一问题:

已知相互关联的两个量,其中一种量改变,另一种量也随之而改变,其变化的规律是相同的,这种问题称之为归一问题。

根据求“单一量”的步骤的多少,归一问题可以分为一次归一问题,两次归一问题。

根据球痴单一量之后,解题采用乘法还是除法,归一问题可以分为正归一问题,反归一问题。

一次归一问题,用一步运算就能求出“单一量”的归一问题。又称“单归一。”

两次归一问题,用两步运算就能求出“单一量”的归一问题。又称“双归一。”

正归一问题:用等分除法求出“单一量”之后,再用乘法计算结果的归一问题。

反归一问题:用等分除法求出“单一量”之后,再用除法计算结果的归一问题。

解题关键:从已知的一组对应量中用等分除法求出一份的数量(单一量),然后以它为标准,根据题目的要求算出结果。

最简单的数学应用题模板 篇5

1、谈话:(1)(拿起粉笔)工厂里生产出一支一支的粉笔,卖给我们的学校是不是一支一支拿过来呢?(得出先装成盒再装成箱)

(2)生举例子:生活中这样的例子还有很多很多,你们还能举吗?(举出不同情况的例子)

2、动手操作、加深印象:把12支铅笔平均分成2份,每份是几?把每份6支平均分成3份,每份是几?

小结:刚才进行了几次平均分?

3、提供材料:假设一个工厂生产了4800支粉笔、每60支装

一盒、每20盒装一箱、装了4箱。

(1)观察从这些材料中你知道了什么?

(2)选择其中的一些材料,提出问题编出应用题。

4、呈现学生编的应用题;

(1)一步计算的、两步计算的、

(2)解决一步计算的与两步计算的连乘的应用题

(个别学生说说自己的理由)

如:一个工厂生产了4800支粉笔,平均装了4箱,每20盒装一箱,平均每盒装多少支?(可能也有不同的:如问题是装了几箱。)

最简单的数学应用题模板 篇6

最新小升初数学应用题试卷精选

1. 一台拖拉机5小时耕地40公顷,照这样的速度,耕72公顷地需要几小时?

要求耕72公顷地需要几小时,我们就要先求出这台拖拉机每小时耕地多少公顷?

(1)每小时耕地多少公顷?

405=8(公顷)

(2)需要多少小时?

728=9(小时)

答:耕72公顷地需要9小时。

4. 小华每分拍球25次,小英每分比小华少拍5次。照这样计算,小英5分拍多少次?小华要拍同样多次要用几分?

(1)小英每分拍多少次?

25-5=20(次)

(2)小英5分拍多少次?

205=100(次)

(3)小华要几分拍100次?

10025=4(分)

答:小英5分拍100次,小华要拍同样多次要用4分。

5. 刘老师搬一批书,每次搬15本,搬了12次,正好搬完这批书的一半。剩下的.书每次搬20本,还要几次才能搬完?

(1)12次搬了多少本?

1512=180(本)

搬了的与没搬的正好相等

(2)要几次才能把剩下的搬完?

18020=9(次)

答:还要9次才能搬完。

三. 独立思考(答题时间:15分钟)

1. 在下图中,用16根等长的小棒,摆出5个正方形,移动其中3根,使它成为4个正方形。

2. 商店运来苹果和梨各一吨,5筐苹果的重量和4筐梨的重量相等。每筐苹果重20千克,商店运来苹果和梨各多少筐?每筐梨重多少千克?

2 纺织厂运来一堆煤,如果每天烧煤1500千克,6天可以烧完。如果每天烧1000千克,可以多烧几天?

要想求可以多烧几天,就要先知道这堆煤每天烧1000千克可以烧多少天;而要求每天烧1000千克,可以烧多少天,还要知道这堆煤一共有多少千克。

(1)这堆煤一共有多少千克?

15006=9000(千克)

(2)可以烧多少天?

90001000=9(天)

(3)可以多烧多少天?

9-6=3(天)

二. 合作交流

1. 把7本相同的书摞起来,高42毫米。如果把28本这样的书摞起来,高多少毫米?(用不同的方法解答)

方法1:

(1)每本书多少毫米?

427=6(毫米)

(2)28本书高多少毫米?

628=168(毫米)

方法2:

(1)28本书是7本书的多少倍?

287=4

(2)28本书高多少毫米?

424=168(毫米)

2. 两个车间装配电视机。第一车间每天装配35台,第二车间每天装配37台。照这样计算,这两个车间15天一共可以装配电视机多少台?

方法1:

(1)两个车间一天共装配多少台?

35+37=72(台)

(2)15天共可以装配多少台?

7215=1080(台)

方法2:

(1)第一车间15天装配多少台?

3515=525(台)

(2)第二车间15天装配多少台?

3715=555(台)

(3)两个车间一共可以装配多少台?

555+525=1080(台)

答:15天两个车间一共可以装配1080台。

3. 同学们到车站义务劳动,3个同学擦12块玻璃。(补充不同的条件求问题,编成两道不同的两步计算应用题)。

补充1:照这样计算,9个同学可以擦多少块玻璃?

(1)每个同学可以擦几块玻璃?

123=4(块)

(2)9个同学可以擦多少块?

49=36(块)

答:9个同学可以擦36块。

补充2:照这样计算,要擦40块玻璃,需要几个同学?

(1)每个同学可以擦几块玻璃?

123=4(块)

(2)擦40块需要几个同学?

最简单的数学应用题模板 篇7

[专题介绍]

工厂和商店有时减价出售商品,通常我们把它称为“打折扣”出售,几折就是百分之几十。

利润问题也是一种常见的百分数应用题,商店出售商品总是期望获得利润,一般情况下,商品从厂家购进的价格称为本价,商家在成本价的基础上提高价格出售,所赚的钱称为利润,利润与成本的百分比称之为利润率。期望利润=成本价×期望利润率。

[经典例题]

例1、某商店将某种DVD按进价提高35%后,打出“九折优惠酬宾,外送50元出租车费”的广告,结果每台仍旧获利208元,那么每台DVD的进价是多少元?(B级)

解:定价是进价的1+35%

打九折后,实际售价是进价的135%×90%=121.5%

每台DVD的实际盈利:208+50=258(元)

每台DVD的进价258÷(121.5%-1)=1200(元)

答:每台DVD的进价是1200元

例2:一种服装,甲店比乙店的进货便宜10%甲店按照20%的利润定价,乙店按照15%的利润定价,甲店比乙店的出厂价便宜11.2元,问甲店的进货价 是多少元?(B级)

分析:

解:设乙店的成本价为1

(1+15%)是乙店的定价

(1-10%)×(1+20%)是甲店的定价

(1+15%)-(1-10%)×(1+20%)=7%

11.2÷7%=160(元)

160×(1-10%)=144(元)

答:甲店的进货价为144元。

例3、原来将一批水果按100%的利润定价出售,由于价格过高,无人购买,不得不按38%的利润重新定价,这样出售了其中的40%,此时因害怕剩余水果会变质,不得不再次降价,售出了全部水果。结果实际获得的总利润是原来利润的30.2%,那么第二次降价后的价格是原来定价的百分之几?(B级)

分析:

要求第二次降价后的价格是原来定价的百分之几,则需要求出第二次是按百分之几的利润定价。

解:设第二次降价是按x%的利润定价的。

38%×40%+x%×(1-40%)=30.2%

X%=25%

(1+25%)÷(1+100%)=62.5%

答:第二次降价后的价格是原来价格的62.5%

最简单的数学应用题模板 篇8

1.一支解放军部队从驻地乘车赶往某地抗洪抢险,如果将车速比原来提高1/9,就可比预定的时间20分钟赶到;如果先按原速度行驶72千米,再将车速比原来提高1/3,就可比预定的时间提前30分钟赶到.这支解放军部队的行程是多少千米?

解:车速提高1/9,所用的时间就是预定时间的1÷(1+1/9)=9/10,所以预定时间是20÷(1-9/10)=200分钟。

速度提高1/3,如果行完全程,所用时间就是预定时间的1÷(1+1/3)=3/4,即提前200×(1-3/4)=50分钟。

但却提前了30分钟,说明有30÷50=3/5的路程提高了速度。

所以,全程是72÷(1-3/5)=180千米。

这题我有一巧妙的,小学生容易懂的算术方法。

如将车速比原来提高9分之1,速度比变为10:9,所以时间比为9:10,原来要用时20*(10-9)=200分。

如一开始就提高3分之1,就会用时:3*200/4=150分,这样提前50分,而实际提前30分,

所以72千米占全程的1-30/50=20/50,

所以全程72/(20/50)=180千米。

回答者:纵览飞云-魔法师四级1-918:56

2.一只船从甲码头到乙码头往返一次共用4小时,回来时顺水比去时每小时多行12千米.因此后2小时比前2小时多行18千米,那么甲、乙两个码头距离是几千米?

解:逆水行的18÷2=9千米,顺水要行12×2-9=15千米。所以顺水速度是12÷(15-9)×15=30千米/小时。

逆水速度是30-12=18千米/小时。所以两个码头相距18×2+9=45千米

解:后2小时比前2小时多行18千米,意味着前2小时只行到了离乙码头18/2=9千米的地方。顺水比逆水每小时多行12千米,那么2小时就应该多行12*2=24千米,实际上少了24-18=6千米,从而,顺水只行了:2-6/12=1.5小时。逆水行9千米用了2-1.5=0.5小时,逆水速度是:9/0.5=18千米顺水速度是:18+12=30千米甲乙两码头的距离是:30*1.5=45千米。

18÷12=1.5(时)就是回来时顺水所用的时间,那么去时所用的时间就是4-1.5=2.5(时)

那么去时的速度就是18÷(2.5-1.5)=18(千米)

路程就是:18×2.5=45(千米)

3.甲、乙两个班的学生人数的比是5:4,如果从乙班转走9名学生,那么甲班就比乙班人数多2/3.这时乙班有多少人?

解:甲班比乙班多2/3,说明乙班3份,甲班3+2=5份,份数刚好没有变。

说明乙班转走的9名同学刚好是4-3=1份。所以这时乙班人数是9×3=27人。

解:乙班转走9人后两班人数之比为5:3

则这个9人就是乙班原来人数的1/4,现在的1/3。所以乙班现在有9*3=27人`

4.甲、乙两堆煤共重78吨,从甲堆运出25%到乙堆,则乙堆与甲堆的重量比是8:5.原来各有多少吨煤?

解:后来甲堆有78÷(8+5)×5=30吨。

原来甲堆就有30÷(1-25%)=40吨。

原来乙堆就有78-40=38吨。

最简单的数学应用题模板 篇9

1、原有29个球,借出8个,还剩多少个?

2、借出8个球,还剩21个,原有多少个?

3、买来12个苹果,吃了4个,还剩多少个?

4、吃了4个苹果,还剩8个,原来有多少个?

5、车场里开走了4辆车,还剩15辆。车场里原有多少辆车?

6、草地上的兔子跑了8只后,还剩下40只,原来有兔子多少只?

7、商店卖出汽水32箱,还剩20箱,原有汽水多少箱?

8、水果店卖出苹果76筐,还剩3筐,原有苹果多少筐?

9、小山剪了一些★,贴了31个,还剩下7个。小山剪了几个★?

10、小华看书看了92页,还剩下4页没有看。这本书有多少页?

11、英语小组原来有12个人,今天上课缺席的有2个人,今天上课的有多少人?

12、学校里有8个足球,49个小皮球,小皮球比足球多多少个?

13、商店里有26个小汽球,5个大汽球,大汽球比小汽球少多少个?

14、合唱队有38个女同学,6个男同学,男同学比女同学少多少个?

15、小明养了36只兔,小红养了24只兔,小明比小红多养了多少只?

16、商店里有35盒红汽球,20盒黄汽球,黄汽球比红汽球少多少盒?

17、梨子有5个,苹果有7个,苹果比梨子多多少个?

18、草地上有白兔7只,黑兔4只,白兔比黑兔多多少只?

19、小花8岁,爸爸38岁,爸爸比小花大几岁?

20、美术组有13人,数学组有9人,美术组比数学组多多少人?

21、草地有公鸡7只,母鸡39只,母鸡比公鸡多多少只?公鸡比母鸡少多少只?

22、食堂运回大米28袋,面粉7袋,面粉比大米少多少袋?

23、体操队有18人,游泳队比体操队多11人,游泳队有多少人?

24、水果店卖出26筐苹果后,剩下的比卖出的多9筐。剩下多少筐苹果?

25、小华有25本故事书,小方比他多11本。小方有多少本?

26、六月卖出冰箱58台,七月比六月多卖出22台。七月卖出多少台?

27、小花今年8岁,爸爸比她大29岁。爸爸今年多少岁?

28、有5个草莓,樱桃比草莓多3个,樱桃有几个?

29、小花捡了25个贝壳,小明比小花多捡了4个,小明捡了多少个贝壳?

30、数学组有9人,美术组比数学组多8人,美术组有多少人?

31、食堂运回大米28袋,面粉比大米多7袋,面粉有多少袋?

32、小明养了36只兔,小红比小明多养了3只,小红养了多少只兔?

33、商店里有35盒红汽球,黄汽球比红汽球多10盒,黄汽球有多少盒?

34、25比12多多少?

35、比32多20的数是多少?

36、一个加数是28,另一个加数比它大10,另一个加数是多少?

37、一个数比60多30,这个数是多少?

38、38比8多多少?

39、一个数是26,另一个数是58,和是多少?

40、29比7多多少?

41、比49多20的数是多少?

42、一个数比26多8,这个数是多少?

43、第一个加数是58,第二个加数是89,第一个加数比第二个加数少多少?

44、被减数是69,减数是39,被减数比减数多多少?

45、比29多29的数是多少?

46、54与67的差是多少?

47、5与38的和是多少?

48、比最大的两位数多1的数是多少?

49、一个数是5,另一个数是38,这两个数相差多少?

50、一个加数是35,另一个加数比它多7,另一个加数是多少?

最简单的数学应用题模板 篇10

关于小升初数学应用题公式集锦

小升初数学应用题各类型公式集锦,包括植树问题、盈亏问题、相遇问题、追及问题、流水问题、浓度问题、利润与折扣问题公式。

植树问题 :

1. 非封闭线路上的植树问题主要可分为以下三种情形:

⑴如果在非封闭线路的两端都要植树,那么:

株数=段数+1=全长÷株距-1

全长=株距×(株数-1)

株距=全长÷(株数-1)

⑵如果在非封闭线路的一端要植树,另一端不要植树,那么:

株数=段数=全长÷株距

全长=株距×株数

株距=全长÷株数

⑶如果在非封闭线路的两端都不要植树,那么:

株数=段数-1=全长÷株距-1

全长=株距×(株数+1)

株距=全长÷(株数+1)

2. 封闭线路上的植树问题的'数量关系如下

株数=段数=全长÷株距

全长=株距×株数

株距=全长÷株数

盈亏问题 :

(盈+亏)÷两次分配量之差=参加分配的份数

(大盈-小盈)÷两次分配量之差=参加分配的份数

(大亏-小亏)÷两次分配量之差=参加分配的份数

相遇问题 :

相遇路程=速度和×相遇时间

相遇时间=相遇路程÷速度和

速度和=相遇路程÷相遇时间

追及问题 :

追及距离=速度差×追及时间

追及时间=追及距离÷速度差

速度差=追及距离÷追及时间

流水问题 :

顺流速度=静水速度+水流速度

逆流速度=静水速度-水流速度

静水速度=(顺流速度+逆流速度)÷2

水流速度=(顺流速度-逆流速度)÷2

浓度问题 :

溶质的重量+溶剂的重量=溶液的重量

溶质的重量÷溶液的重量×100%=浓度

溶液的重量×浓度=溶质的重量

溶质的重量÷浓度=溶液的重量

利润与折扣问题:

利润=售出价-成本

利润率=利润÷成本×100%=(售出价÷成本-1)×100%

涨跌金额=本金×涨跌百分比

折扣=实际售价÷原售价×100%(折扣<1)

利息=本金×利率×时间

[荐]最简单的数学应用题10篇


写作文档并非轻松的事情,在撰写文档前,大家应该都会寻找相关的范文。范文写作框架能够帮助我们更好地组织文章使之更有内涵,根据您的需求,57梯子网为您搜集了“最简单的数学应用题”,阅读这篇文章后您会有更加全面的了解!

最简单的数学应用题 篇1

一批零件,甲独做6小时完成,乙独做8小时完成。现在两人合做,完成任务时甲比乙多做24个,求这批零件共有多少个?

解 :设总工作量为1,则甲每小时完成1/6,乙每小时完成1/8,甲比乙每小时多完成(1/6-1/8),二人合做时每小时完成(1/6+1/8)。

因为二人合做需要[1÷(1/6+1/8)]小时,这个时间内,甲比乙多做24个零件,所以

(1)每小时甲比乙多做多少零件?

24÷[1÷(1/6+1/8)]=7(个)

(2)这批零件共有多少个?

7÷(1/6-1/8)=168(个)

答:这批零件共有168个。

解二: 上面这道题还可以用另一种方法计算:

两人合做,完成任务时甲乙的工作量之比为 1/6∶1/8=4∶3;

由此可知,甲比乙多完成总工作量的 4-3/4+3 =1/7;

所以,这批零件共有 24÷1/7=168(个)

最简单的数学应用题 篇2

小升初数学应用题复习综合训练(十六)

1.甲、乙两个书架,共有书3000册,甲的册数的2/5比乙的册数的1/4多420本,求两个书架各有书多少册?

解:如果给乙的1/4加上420册,即给乙加上420*4=1680册,乙的1/4就与甲的2/5同样多。这时,甲、乙的册数比为1/4:2/5=5:8。

所以,甲书架有书:(3000+1680)*5/(5+8)=1800册;乙书架有书:3000-1800=1200册。

2.姐弟两人打印一批稿件,姐姐单独打印需要的时间是弟弟所需时间的3/8,姐姐先打印了这批稿件的2/5后,接着由弟弟单独打印,用24小时打印完,问姐姐打印了多少小时?

解法一:

另外的1-2/5=3/5如果弟弟做,需要的时间就相当于姐姐的3/5÷3/8=8/5, 所以姐姐单独打印完需要24÷(2/5+8/5)=12小时,所以姐姐打了12×2/5=

4.8小时。

解法二:

姐姐单独打印需要的时间是弟弟所需时间的3/8,姐姐先打印了这批稿件的2/5需要的时间相当于弟弟完成同样任务所需总时间的2/5×3/8=3/20,

接着由弟弟单独打印,需时为总时间的3/5,两比为1/4,共计用24小时。

弟弟打剩下的3/5用时24×4/(1+4)=96/5小时,完成全部任务用96÷5÷3/5=32小时。姐姐单独打完用时是32×3/8=12小时。所以姐姐用了12×2/5=4.8小时。

3.有甲、乙两个水管向水池注水,先开甲管,开放时间是单开乙管注满水池所需时间的1/3.然后开放乙管,开放的时间是单开甲管注满水池所需时间的1/3.这样注满水池的13/18.如果甲、乙两管同时开放,注满水池需3+3/5小时,那么单开甲管或单开乙管注满水池,各需要多少小时?

小升初数学应用题综合训练系列(十九)-北师大版││小学-旗下的小学(),为您免费提供小学语数英等各学科的海量教学资源:试题、试卷、教案、课件、动画课件、素材、作文、教学音视频和拓展资料等。充分满足您免费下载和上传各类资料的需求。

解:用初中的方法解答一下。设甲管开放时间是x小时,乙管开放时间是y小时。 有x/y×1/3+y/x×1/3=13/18,解得y/x=2/3

因为1/y+1/x=5/18,所以,x=9,y=6

4.A,B两地相距105千米,甲、乙两人骑自行车分别从两地同时相向而行,出发后经1+3/4小时相遇,接着两人继续前进,在他们相遇3分钟后,一直以每小时40千米速度行驶的甲在途中与迎面而来的丙相遇,丙在与甲相遇后继续前进,在C地赶上乙.如果开始时甲的速度比原速每小时慢20千米,而乙的速度比原速每小时快2千米.那么甲乙就会在C地相遇.求丙的骑车速度?

解:甲乙的速度和每小时105÷7/4=60千米。

乙的速度是每小时行60-40=20千米。

后来甲的速度是每小时40-20=20千米,

乙的速度是每小时20+2=22千米。

C地在距离A地的105÷(20+22)×20=50千米。

原来相遇的地点距离A地105÷60×40=70千米。

3分钟后甲乙相距60×3/60=3千米。

乙行了20×3/60=1千米,距离C地70-50+1=19千米。

甲行了40×3/60=2千米,丙距离C地70-50+2=22千米。

乙丙的速度比是19:22,所以丙的速度是每小时20÷19×22=440/19千米。

5.一件工作由A,B两道工序,上午在A工序上工作的人数是在B工序上工作人数的1/6.为提高工作效率,下午从B工序上调1人到A工序上,这时A工序上的人数是B工序上人数的1/5,A,B两个工序上共有多少人在工作?

解:上午在A工序的人数是总人数的1÷(1+6)=1/7

小升初数学应用题综合训练系列(十九)

下午在A工序上的人数是总人数的1÷(1+5)=1/6

所以共有1÷(1/6-1/7)=42人。

6.一座下底面是边长为10米的正方形石台,它的一个顶点A有一个虫子巢穴,虫甲每分钟爬6厘米,虫乙每分钟爬10厘米,甲沿正方形的边由A-B-C-D-A不停地爬行,甲先爬2厘米后,乙沿甲爬行过的路线追赶甲,当乙遇到甲后,乙就立即沿原路返回巢穴,然后乙再沿甲爬行的路线追赶甲,.......在甲爬行的一圈内,乙最后一次追上甲时,乙爬行了多长时间?

解:谈谈我对这个题目的详细解答,与大家共享。

10米的正方形的周长是10×4×100=4000厘米。

每分钟乙虫比甲虫多行10-6=4厘米。

每次乙从起点出发追及,乙行的路程不能超过4000厘米。

所以每次追及的时间不能超过4000÷10=400分钟。

所以相差的距离不能超过400×4=1600厘米。

设每一次追的距离为1份,

那么下一次追及的距离是1+6×[1÷(10-6)]×2=4份。

每次从起点出发追及的距离依次是2、8、32、128、512、20xx、……

因此,最后一次追及相差的距离是512厘米。

当乙追上甲时,甲共行了512÷4×10=1280厘米。

所以,从乙出发到最后一次追上甲,甲共行了1280-2=1278厘米。

甲行这段路程的时间就是乙爬行的所有时间。

所以是1278÷6=213分钟。

小升初数学应用题综合训练系列(十九)

7.有一群猴子,分一堆桃子,第一只猴子分了4个桃子和剩下桃子的1/10,第二只猴子分了8个桃子和这时剩下桃子的1 /10,第三只猴子分了12个桃子和这时剩下桃子的1/10........依次类推.最后发现这堆桃子正好分完,且每只猴子分得的桃子同样多.那么这群猴子有多少只?

方程解法:设总的桃子个数是10a+4个,那么第一只猴子分得a+4个桃子 剩下9a,假设9a=10b+8个,那么第二只猴子分得b+8个桃子。

所以a+4=b+8,即b=a-4个。那么就有9a=10(a-4)+8。

解得a=32。所以桃子有32×10+4=324个。

每只猴子分得32+4=36个,所以猴子有324÷36=9只。

明月清风老师的解法。

第一只猴子分得的那1/10比第二只猴子的那1/10多8-4=4个

第一只猴子分得的那1/10对应的单位1比第二只猴子分得的1/10对应的单位1多4÷1/10=40个。

那么第一只猴子分得的那1/10是40-8=32个。

所以桃子总数是32×10+4=324个。

每只猴子吃32+4=36个,那么有324÷36=9只猴子。

8.有甲、乙两项工作,张师傅单独完成甲工作要9天,单独完成乙工作要12天.王师傅单独完成甲工作要3天,单独完成乙工作要15天.如果两人合作完成这两项工作,最少需要多少天?

解:分配任务,王师傅完成甲工作的时间少,先做3天甲工作,就完成了。 张师傅完成乙工作的时间少,先做3天乙工作,剩下1-3/12=3/4。

还需要3/4÷(1/12+1/15)=5天。所以共有3+5=8天。

小升初数学应用题综合训练系列(十九)-北师大版││小学-旗下的小学(),为您免费提供小学语数英等各学科的海量教学资源:试题、试卷、教案、课件、动画课件、素材、作文、教学音视频和拓展资料等。充分满足您免费下载和上传各类资料的需求。

9.某服装厂生产一种服装,每件的成本是144元,售价是200元.一位服装经销商订购了120件这种服装,并提出:如果每件的销售每降低2元,我就多订购6件.按经销商的要求,这个服装厂售出多少件时可以获得最大的利润,这个最大利润是多少元?

解:原来的利润是200-144=56元。

由于56是2的倍数,所以把56看作56÷2=28份,

由于120是6的倍数,所以120看作120÷6=20份。

所以(20+28)÷2=24份的时候利润最大。

即最大利润是24×2×24×6=6912元。售出的件数是24×6=144件。

10.甲、乙两车从A,B两站同时相向而行,已知甲车的速度是乙车的1.4倍,当甲车到达途中C站时,乙车还要再行4小时48分才能到达C站,那么甲车到达C站后还要再行多少小时与乙车相遇?

解:相距的路程是乙行4+48/60=4.8小时的路程。

所以,相遇时间是4.8÷(1+1.4)=2小时。

最简单的数学应用题 篇3

1、小明从家去学校,每分钟走80米,用了12分钟;中午放学沿原路回家,每分钟走100米,多少分钟到家?

2、汽车从甲地到乙地平均每小时行50千米,6小时到达;原路返回时每小时比去时快10千米,返回时用了几个小时?

3、货车从A城到B城,去时每小时行50千米,4小时到达;沿原路返回时比去时多用了1小时,返回时每小时比去时慢多少千米?

典型例题2

一辆汽车以每小时40千米的速度从甲地到乙地,出发1.5小时后,超过中点8千米。照这样的速度,这辆汽车还要行驶多长时间才能到达乙地?

最简单的数学应用题 篇4

导语: 小升初数学知识的巩固在于平时的积累与准备,备考需要用心去学习,下面为大家分享小升初数学应用题,希望对大家有帮助!

1.甲、乙、丙三人在A、B两块地植树,A地要植900棵,B地要植1250棵.已知甲、乙、丙每天分别能植树24,30,32棵,甲在A地植树,丙在B地植树,乙先在A地植树,然后转到B地植树.两块地同时开始同时结束,乙应在开始后第几天从A地转到B地?

总棵数是900+1250=2150棵,每天可以植树24+30+32=86棵

需要种的天数是2150÷86=25天

甲25天完成24×25=600棵

那么乙就要完成900-600=300棵之后,才去帮丙

即做了300÷30=10天之后 即第11天从A地转到B地。

2.有三块草地,面积分别是5,15,24亩.草地上的草一样厚,而且长得一样快.第一块草地可供10头牛吃30天,第二块草地可供28头牛吃45天,问第三块地可供多少头牛吃80天?

这是一道牛吃草问题,是比较复杂的牛吃草问题。

把每头牛每天吃的草看作1份。

因为第一块草地5亩面积原有草量+5亩面积30天长的草=10×30=300份

所以每亩面积原有草量和每亩面积30天长的草是300÷5=60份

因为第二块草地15亩面积原有草量+15亩面积45天长的草=28×45=1260份

所以每亩面积原有草量和每亩面积45天长的草是1260÷15=84份

所以45-30=15天,每亩面积长84-60=24份

所以,每亩面积每天长24÷15=1.6份

所以,每亩原有草量60-30×1.6=12份

第三块地面积是24亩,所以每天要长1.6×24=38.4份,原有草就有24×12=288份

新生长的每天就要用38.4头牛去吃,其余的牛每天去吃原有的草,那么原有的草就要够吃80天,因此288÷80=3.6头牛

所以,一共需要38.4+3.6=42头牛来吃。

两种解法:

解法一:

设每头牛每天的吃草量为1,则每亩30天的总草量为:10*30/5=60;每亩45天的总草量为:28*45/15=84那么每亩每天的新生长草量为(84-60)/(45-30)=1.6每亩原有草量为60-1.6*30=12,那么24亩原有草量为12*24=288,24亩80天新长草量为24*1.6*80=3072,24亩80天共有草量3072+288=3360,所有3360/80=42(头)

解法二:10头牛30天吃5亩可推出30头牛30天吃15亩,根据28头牛45天吃15木,可以推出15亩每天新长草量(28*45-30*30)/(45-30)=24;15亩原有草量:1260-24*45=180;15亩80天所需牛180/80+24(头)24亩需牛:(180/80+24)*(24/15)=42头

3. 某工程,由甲、乙两队承包,2.4天可以完成,需支付1800元;由乙、丙两队承包,3+3/4天可以完成,需支付1500元;由甲、丙两队承包,2+6/7天可以完成,需支付1600元.在保证一星期内完成的前提下,选择哪个队单独承包费用最少?

甲乙合作一天完成1÷2.4=5/12,支付1800÷2.4=750元

乙丙合作一天完成1÷(3+3/4)=4/15,支付1500×4/15=400元

甲丙合作一天完成1÷(2+6/7)=7/20,支付1600×7/20=560元

三人合作一天完成(5/12+4/15+7/20)÷2=31/60,

三人合作一天支付(750+400+560)÷2=855元

甲单独做每天完成31/60-4/15=1/4,支付855-400=455元

乙单独做每天完成31/60-7/20=1/6,支付855-560=295元

丙单独做每天完成31/60-5/12=1/10,支付855-750=105元

所以通过比较

选择乙来做,在1÷1/6=6天完工,且只用295×6=1770元

4. 一个圆柱形容器内放有一个长方形铁块.现打开水龙头往容器中灌水.3分钟时水面恰好没过长方体的顶面.再过18分钟水已灌满容器.已知容器的`高为50厘米,长方体的高为20厘米,求长方体的底面面积和容器底面面积之比.

把这个容器分成上下两部分,根据时间关系可以发现,上面部分水的体积是下面部分的18÷3=6倍

上面部分和下面部分的高度之比是(50-20):20=3:2

所以上面部分的底面积是下面部分装水的底面积的6÷3×2=4倍

所以长方体的底面积和容器底面面积之比是(4-1):4=3:4

独特解法:

(50-20):20=3:2,当没有长方体时灌满20厘米就需要时间18*2/3=12(分),

所以,长方体的体积就是12-3=9(分钟)的水量,因为高度相同,

最简单的数学应用题 篇5

1.六年级五个班的同学共植树100棵.已知每个班植树的棵数都不相同,且按数量从多到少的排名恰好是一、二、三、四、五班.又知一班植的棵数是二、三班植的棵数之和,二班植的棵数是四、五班植的棵数之和,那么三班最多植树多少棵?

一班=二班+三班,二班=四班+五班;

可知,五个班的总和=一班+二班+三班+二班=二班×3+三班×2=100

所以二班×5>100>三班×5

所以二班人数超过20,三班人数少于20人

如果二班植树21棵,那么三班植树(100-21×3)÷2=17.5,棵数不能为小数。

如果二班植树22棵,那么三班植树(100-22×3)÷2=17棵

所以三班最多植树17棵。

2.甲每小时跑13千米,乙每小时跑11千米,乙比甲多跑了20分钟,结果乙比甲多跑了2千米.乙总共跑了多少千米?

乙多跑的20分钟,跑了20/60×11=11/3千米,

结果甲共追上了11/3-2=5/3千米,

需要5/3÷(13-11)=5/6小时,

乙共行了11×(5/6+20/60)=77/6千米

3.有高度相等的A,B两个圆柱形容器,内口半径分别为6厘米和8厘米.容器A中装满水,容器B是空的,把容器A中的水全部倒入容器B中,测得容器B中的水深比容器高的7/8还低2厘米.容器的高度是多少厘米?

这个题目要注意是“底面积”而不是“底面半径”,与高的关系!

容器A中的水全部倒入容器B,

容器B的水深就应该占容器高的(6×6)÷(8×8)=9/16

所以容器高2÷(7/8-9/16)=6.4厘米

4.有104吨的货物,用载重为9吨的汽车运送.已知汽车每次往返需要1小时,实际上汽车每次多装了1吨,那么可提前几小时完成.

用进一法解决问题,次数要整数才行。

需要跑的次数是104÷9=11次……5吨,所以要跑11+1=12次

实际跑的次数是104÷(9+1)=10次……4吨,故10+1=11次

往返一次1小时,所以提前(12-11)×1=1小时。

5.师、徒二人第一天共加工零件225个,第二天采用了新工艺,师傅加工的零件比第一天增加了24%,徒弟增加了45%,两人共加工零件300个,第二天师傅加工了多少个零件?徒弟加工了几个零件?

这个题目有点像鸡兔同笼问题:

如果两人工作效率都提高24%,那么两人共加工零件225×(24%+1)=279个

说明徒弟提高45%-24%=21%的工作效率就可以加工300-279=21个

所以徒弟第一天加工21÷21%=100个,那么徒弟第二天加工了100×(1+45%)=145个

那么师傅加工了300-145=155个零件。

6.奋斗小学组织六年级同学到百花山进行野营拉练,行程每天增加2千米.去时用了4天,回来时用了3天,问学校距离百花山多少千米?

利用等差数列来解答:

行程每天增加2千米我是这样理解的,第一天按照原来的速度行使,从第二天开始,都比前一天多行2千米。所以形成了一个等差数列。

由于前面四天和后面三天行的路程相等。

去时,四天相当于原速行四天还要多2+4+6=12千米

返回时,三天相当于原速行三天还要多8+10+12=30千米

所以原速每天行30-12=18千米,可以求出学校距离百花山18×3+30=84千米

最简单的数学应用题 篇6

活动目标:

1.能根据图片内容编8以内加、减法的应用题并列出相应的算式。

2.让幼儿学习分析问题的能力以及看图编应用题的想象力。

3.培养幼儿养成良好的坐姿和正确的握笔姿势,并形成良好的操作习惯。

4.喜欢数学活动,乐意参与各种操作游戏,培养思维的逆反性。

5.发展目测力、判断力。

活动准备:

PPT课件、操作作业纸、铅笔、橡皮擦等

活动重难点:

能根据图片内容编8以内加、减法的应用题并列出相应的算式。

活动方法与手段:

多媒体演示法、谈话法、操作法等等。

活动过程:

一、 开始部分

1、1-20单数,两个两个数1-20,五个五个数。

2、碰球游戏:复习6、7、8、的组成

1.幼儿根据教师的要求复习数数。

2.师幼共同玩碰球游戏。

运用不同的形式复习数数,激发幼儿的兴趣并帮助他们巩固对数的认识。

二、 基本部分

1.教师出示PPT课件。(第一幅图:小鸟在天空飞翔)

提问:小朋友,图片上有什么呀?接下来发生了什么事情?你能将这件事情编成一道应用题说一说?那列成算式怎么说?你还能根据这个算式编出其他的应用题吗?

2、教师出示第二幅图。(小兔子吃胡萝卜)

师:看看怎么了? (小兔子吃掉三个胡萝卜)

3、看图自编应用题并列出相应的算式。

教师:接下来老师可要考考大家,看看你们谁能又快又准地看着图片编一道应用题并列出一个算式呢?

3、教师出示第三幅图片(小朋友玩气球)。

4、教师出示第四幅图片(蝴蝶飞舞)

5、教师出示第五幅图片(鱼缸里的金鱼)

6、教师出示第六幅图片(池塘里的青蛙)

7、师:小朋友,你们都会了吗?现在可是要你们来练练本领咯!

8、出示图片,讲解作业要求与方法。

注意:

(1)写作业时记得看清楚是加法还是减法哦!

(2)我们在写字时要保持正确的坐姿和握笔姿势,谁来说说看应该是什么样子的?

教师小结:将纸放平摆正,抬头挺胸,手臂放平,食指与拇指的前端捏住笔杆,眼睛离纸头比要一把尺还长一点的距离。

9、幼儿操作,教师巡回指导。

第一道题目:看分合式列算式

第二道题目:看图列算式

1. 幼儿欣赏PPT课件并

说出图中发生的事情。

2. 根据教师的提问做出

相应的回答。

3. 幼儿根据图片内容以

及教师提示尝试编应用题。

4. 幼儿根据图片内容进

行列算式。

5. 观察作业练习内容,

倾听操作要求

6. 说一说正确的坐姿和握笔的方法。

7.幼儿进行操作练习

1.通过观看课件让幼儿清晰的了解整个事件,活动中教师以提问的引导方式帮助幼儿学会看图编应用题和看图列算式两个主要技能。在这里教师只是辅助的作用,运用课件生动形象又直接的观察让幼儿能更进一步的成为学习的小主人。不仅学习了新的技能,而且提升了幼儿的观察力和语言组织能力。

2.在本次活动中,运用课件创设了多种不同的情景氛围,让孩子在感兴趣的基础上主动去学习,在复习数数和碰球游戏的基础上清晰地知道6、7、8的组成与分合,在观察图片与对话中帮助幼儿梳理图中内容,使得幼儿能更好理解内容,让绝大多部分幼儿都能较轻松的编出应用题并列出算式。

3.在操作环节中,询问并提醒幼儿正确的坐姿与握笔姿势,让孩子在平时的生活中就注意到写字时的良好习惯,并应该每次都坚持保持正确姿势。

三、 结束部分

点评幼儿的作业情况

请个别幼儿展示自己的作业纸,其他幼儿进行检查作答情况。 通过作业点评帮助幼儿了解自己新知识的掌握情况。

活动反思:

在整个教学活动中,“应用题”相对于幼儿来说,是一个较为难理解又难掌握的`领域,如何让幼儿们在提倡的“玩中学”这一模式中掌握知识点呢?我将此作为本次课堂设计的一个难点。以动画人物的形象激发幼儿的兴趣,让幼儿随着喜爱的动画人物进入我所创设的环境中,让幼儿们在与动画人物相互交流的基础上,进行知识性的学习。在编应用题时,小朋友基本能大声的来编,可能是父母在场的关系,小朋友积极举手,认真的投入到活动中。在数学练习时,父母们都走去看自己的宝宝做练习,这个环节有点乱,可是家长们的心情可以理解,所以这个环节在父母们的一起参与下结束了。

最简单的数学应用题 篇7

(1)平均数问题:平均数是等分除法的发展。

解题关键:在于确定总数量和与之相对应的总份数。

算术平均数:已知几个不相等的同类量和与之相对应的份数,求平均每份是多少。数量关系式:数量之和÷数量的个数=算术平均数。

加权平均数:已知两个以上若干份的平均数,求总平均数是多少。

数量关系式 (部分平均数×权数)的总和÷(权数的和)=加权平均数。

差额平均数:是把各个大于或小于标准数的部分之和被总份数均分,求的是标准数与各数相差之和的平均数。

数量关系式:(大数-小数)÷2=小数应得数

最大数与各数之差的和÷总份数=最大数应给数

最大数与个数之差的和÷总份数=最小数应得数。

例:一辆汽车以每小时 100 千米 的速度从甲地开往乙地,又以每小时 60 千米的速度从乙地开往甲地。求这辆车的平均速度。

分析:求汽车的平均速度同样可以利用公式。此题可以把甲地到乙地的路程设为“

(2) 归一问题:已知相互关联的两个量,其中一种量改变,另一种量也随之而改变,其变化的规律是相同的,这种问题称之为归一问题。

根据求“单一量”的步骤的多少,归一问题可以分为一次归一问题,两次归一问题。

根据球痴单一量之后,解题采用乘法还是除法,归一问题可以分为正归一问题,反归一问题。

一次归一问题,用一步运算就能求出“单一量”的归一问题。又称“单归一。”

两次归一问题,用两步运算就能求出“单一量”的归一问题。又称“双归一。”

正归一问题:用等分除法求出“单一量”之后,再用乘法计算结果的归一问题。

反归一问题:用等分除法求出“单一量”之后,再用除法计算结果的归一问题。

解题关键:从已知的一组对应量中用等分除法求出一份的数量(单一量),然后以它为标准,根据题目的要求算出结果。

数量关系式:单一量×份数=总数量(正归一)

总数量÷单一量=份数(反归一)

例 一个织布工人,在七月份织布 4774 米 , 照这样计算,织布 6930 米 ,需要多少天?

分析:必须先求出平均每天织布多少米,就是单一量。 =

(,通过求总数量求得单位数量的个数(或单位数量)。

特点:两种相关联的量,其中一种量变化,另一种量也跟着变化,不过变化的规律相反,和反比例算法彼此相通。

数量关系式:单位数量×单位个数÷另一个单位数量 = 另一个单位数量

单位数量×单位个数÷另一个单位数量= 另一个单位数量。

例 修一条水渠,原计划每天修 800 米 , 6 天修完。实际 4 天修完,每天修了多少米?

分析:因为要求出每天修的长度,就必须先求出水渠的长度。所以也把这类应用题叫做“归总问题”。不同之处是“归一”先求出单一量,再求总量,归总问题是先求出总量,再求单一量。

(4) 和差问题:已知大小两个数的和,以及他们的差,求这两个数各是多少的应用题叫做和差问题。

解题关键:是把大小两个数的和转化成两个大数的和(或两个小数的和),然后再求另一个数。

解题规律:(和+差)÷2 = 大数

大数-差=小数

(和-差)÷2=小数

和-小数= 大数

例 某加工厂甲班和乙班共有工人 94 人,因工作需要临时从乙班调 46 人到甲班工作,这时乙班比甲班人数少 12 人,求原来甲班和乙班各有多少人?

分析:从乙班调 ÷ ,乙班在调出 ,甲班为 9 4 - 8

最简单的数学应用题 篇8

关于小升初数学应用题综合训练

1. 自动扶梯以均匀的速度向上行驶,一男孩与一女孩同时从自动扶梯向上走,男孩的速度是女孩的2倍,已知男孩走了27级到达扶梯的顶部,而女孩走了18级到达顶部.问扶梯露在外面的部分有多少级?

首先要明确:扶梯露在外面的部分的级数=人走的级数+扶梯自动上升的级数。女孩走 18级的时间,男孩应该走 18×2=36级 男孩走了27级,相当于女孩所用的时间的27÷36=1/4

所以男孩到达顶部时,扶梯上升的级数是女孩到达顶部时扶梯上升级数的3/4,扶梯自动上升级数相差27-18=9级 所以,女孩走的时间内扶梯上升了9÷(1-3/4)=36级.所以,扶梯露在外面的部分是36+18=54级

2. 两堆苹果一样重,第一堆卖出2/3,第二堆卖出50千克,如果第一堆剩下的苹果比第二堆剩下的苹果少,那么两堆剩下的苹果至少有多少千克?

第一堆剩下的苹果比第二堆少,那么卖掉的就比第二堆多,并且是3-1=2的倍数,所以第一堆至少卖掉50+2=52千克,剩下52/2=26千克;第二堆卖掉50千克,剩下52+26-50=28千克。两堆剩下的苹果至少有:26+28=54千克。

3. 甲、乙两车同时从A地出发,不停的往返行驶于A、B两地之间.已知甲车的速度比乙车快,并且两车出发后第一次和第二次相遇都杂途中C地,甲车的速度是乙车的几倍?

设相遇点与A地的距离为a,与B地的距离为b,那么:第一次相遇时,甲车比乙车多行的路程为2b,第二次相遇时,甲车比乙车多行的路程为2a.因为从出发到第二次相遇所行总路程是第一次相遇所行总路程的2倍,所以2a是2b的2倍,即a是b的2倍。因此,甲车的速度是乙车的:(a+2b)/a=(a+a)/a=2倍。如果乙车继续行驶回到A地时,那么甲车也刚好回到A地,这时,甲车行了2个往返,乙车行了1个往返,所以,甲车速度是乙车的2÷1=2倍。

4.一只小船从甲地到乙地往返一次共用2小时,回来时顺水,比去时的速度每小时多行8千米,因此第二小时比第一小时多行6千米.求甲、乙两地的距离.

第二小时比第一小时多走6千米,说明逆水走1小时还差6/2=3千米没到乙地。

顺水走1小时比逆水多走8千米,说明逆水走3千米与顺水走8-3=5千米时间相同,这段时间里的路程差是5-3=2千米,等于1小时路程差的1/4,所以顺水速度是每小时5*4=20千米(或者说逆水速度是3*4=12千米)甲、乙两地距离是12*1+3=15千米

1小时是行驶全程的一半时间,因为去时逆水,小船到达不了B地.我们在B之前设置一个C点,是小船逆水行驶1小时到达处.如下图 A *********************C****B*********D 第二小时比第一小时多行驶的行程,恰好是C至B距离的2倍,它等于6千米,就知C至B是3千米. 为了示意小船顺水速度比逆水速度每小时多行驶8千米,在图中再设置D点,D至C是8千米.也就是D至A顺水行驶时间是1小时 D至B是5千米顺水行驶,与C至B逆水行驶3千米时间一样多.因此 顺水速度∶逆水速度=5∶3. 由于两者速度差是8千米.立即可得出逆水速度=8/[(5-3)/3]=12千米/小时 A至B距离是 12+3=15(千米).

5. 甲、乙两车分别从A、B两地出发,并在A,B两地间不断往返行驶.已知甲车的速度是15千米/小时,甲、乙两车第三次相遇地点与第四次相遇地点相差100千米.求A、B两地的距离.

甲车和乙车的速度比是15:35=3:7。这里的相遇存在迎面相遇和追上相遇两种。(如果两车相差的路程是AB的距离的倍数,就是追上相遇。)

第一次相遇(迎面),把全程看作10份,甲车行了3份,乙车行了7份

第二次相遇(追上),10÷(7-3)=2.5,甲车行了2.5×3=7.5份,乙车行了17.5份。

第三次相遇(迎面),甲车行了3×3=9份,乙车行了7×3=21份

第四次相遇(迎面),甲车行了3×5=15份,乙车行了7×5=35份

两次相遇点,相距9-(15-10)=4份,所以每份是100÷4=25千米

所以AB两地相距25×10=250千米

6.某人沿着向上移动的自动扶梯从顶部朝底下用了7分30秒,而他沿着自动扶梯从底朝上走到顶部只用了1分30秒.如果此人不走,那么乘着扶梯从底到顶要多少时间?如果停电,那么此人沿扶梯从底走到顶要多少时间?

把扶梯长度看作单位“1”。当人从顶部朝底下时,人的速度-扶梯速度=1÷7.5=2/15当人从底朝上走到顶部时,人的速度+扶梯速度=1÷1.5=2/3所以,人的速度是(2/15+2/3)÷2=2/5,扶梯的速度是2/5-2/15=4/15所以,如果人不走,需要1÷4/15=3又3/4,即3分45秒 如果停电,人就需要1÷2/5=2.5分钟,即2分30秒

7.甲、乙两个圆柱体容器,底面积比为5:3,甲容器水深20厘米,乙容器水深10厘米.再往两个容器中注入同样多的水,使得两个容器中的`水深相等.这时水深多少厘米?

利用比例和差倍问题的思想来解答:

由于甲乙两个容器的底面积之比是5:3,注入同样多的水,那么高度之比就该是3:5, 所以,要使注入后高度相等,那么就要相差20-10=10厘米深。 那么乙容器就要注入10÷(5-3)×5=25厘米 所以这时的水深25+10=35厘米。

8.A、B两地相距207千米,甲、乙两车8:00同时从A地出发到B地,速度分别为60千米/小时,54千米/小时,丙车8:30从B地出发到A地,速度为48千米/小时.丙车与甲、乙两车距离相等时是几点几分?

丙车与甲、乙两车距离相等时必在它们正中间,而这点正是甲、乙两车平均走过的路程。

可以考虑用平均速度来算。 (60+54)÷2=57 甲、乙两车平均速度57千米/小时

(207-57×0.5)÷(57+48)=1.7 8:30后1.7小时(102分钟)是10:12

丙车与甲乙两车距离相等,说明丙车行到了两车的中点上。我们假设丁,也和甲乙两人同时从A地出发到B地,以(60+54)÷2=57千米/小时的速度行驶,丁车就一直在甲乙两车的中点上。丙车和丁车相遇时,丙车就与甲乙两车距离相等了。丁车先行了57×30/60=28.5千米,

又经过了(207-28.5)÷(57+48)=1.7小时和丙车相遇,即丙车于10:12,与甲乙两车距离相等。

9.一个长方形的周长是130厘米,如果它的宽增加1/5,长减少1/8,就得到一个相同周长的新长方形.求原长方形的面积.

由题意,宽的1/5等于长的1/8 即宽、长比为8:5 宽:130÷2÷(8+5)×8=40 长:130÷2-40=25 25×40=1000

10.有一长方形,它的长与宽的比是5:2,对角线长29厘米,求这个长方形的面积.

我是画图来解答的 算出黄色部分和中间空心部分的面积比然后从29的平方里面来分配

面积比5×2×2:3×3=20:9 黄色部分的面积是29×29÷(20+9)×20=580平方厘米

最简单的数学应用题 篇9

1.小明早上从家步行去学校,走完一半路程时,爸爸发现小明的数学书丢在家里,随即骑车去给小明送书,追上时,小明还有3/10的路程未走完,小明随即上了爸爸的车,由爸爸送往学校,这样小明比独自步行提早5分钟到校。小明从家到学校全部步行需要多少时间?

爸爸骑车和小明步行的速度比是(1-3/10):(1/2-3/10)=7:2

骑车和步行的时间比就是2:7,所以小明步行3/10需要5(7-2)7=7分钟

所以,小明步行完全程需要73/10=70/3分钟。

2.甲、乙两车都从A地出发经过B地驶往C地,A,B两地的距离等于B,C两地的距离。乙车的速度是甲车速度的80%。已知乙车比甲车早出发11分钟,但在B地停留了7分钟,甲车则不停地驶往C地。最后乙车比甲车迟4分钟到C地。那么乙车出发后几分钟时,甲车就超过乙车。

乙车比甲车多行11-7+4=8分钟。

说明乙车行完全程需要8(1-80%)=40分钟,甲车行完全程需要4080%=32分钟

当乙车行到B地并停留完毕需要402+7=27分钟。

甲车在乙车出发后322+11=27分钟到达B地。

即在B地甲车追上乙车。

3.甲、乙两辆清洁车执行东、西城间的公路清扫任务。甲车单独清扫需要10小时,乙车单独清扫需要15小时,两车同时从东、西城相向开出,相遇时甲车比乙车多清扫12千米,问东、西两城相距多少千米?

甲车和乙车的速度比是15:10=3:2

相遇时甲车和乙车的路程比也是3:2

所以,两城相距12(3-2)(3+2)=60千米

4.今有重量为3吨的集装箱4个,重量为2.5吨的.集装箱5个,重量为1.5吨的集装箱14个,重量为1吨的集装箱7个。那么最少需要用多少辆载重量为4.5吨的汽车可以一次全部运走集装箱?

我的解法如下:(共12辆车)

本题的关键是集装箱不能像其他东西那样,把它给拆散来装。因此要考虑分配的问题。

5.师徒二人共同加工170个零件,师傅加工零件个数的1/3比徒弟加工零件个数的1/4还多10个,那么徒弟一共加工了几个零件?

给徒弟加工的零件数加上10*4=40个以后,师傅加工零件个数的1/3就正好等于徒弟加工零件个数的1/4。这样,零件总数就是3+4=7份,师傅加工了3份,徒弟加工了4份。

最简单的数学应用题 篇10

148.甲、乙、丙三人同时从A向B跑.当甲跑到B时,乙离B还有15米,丙离B还有32米;当乙跑到B时,丙离B还有20米;当丙跑到B时,一共用了25秒,乙每秒跑多少米?

解:乙行15米,丙行32-20=12米。所以乙和丙的速度比是15:12=5:4

所以当乙行到B时,行了5份,丙行了4份,所以全程是20÷(5-4)×5=100米。

所以丙的速度是每秒100÷25=4米,乙的速度是每秒4÷4×5=5米

149.小明从家去体育馆看球赛.去时他步行5分钟后,跑步8分钟,到达体育馆.回来时,他先步行10分钟后,开始跑步,结果比去时多用了3分15秒钟回到家.他跑步的速度与步行的速度比是多少?

解:后来跑步用了5+8+3+1/4-10=25/4分,

所以步行10-5=5分钟的路程和跑步8-25/4=7/4分钟的路程相等。

所以跑步和步行的速度比是5:7/4=20:7。

150.有一批零件,甲、乙两种车床都可以加工.如果甲车床单独加工,可以比乙车床单独加工提前10天完成任务.现在用甲、乙两车床一起加工,结果12天就完成了任务.如果只用甲车床单独加工需多少天完成任务?

解:在明月清风老师的指导下,终于知道了算法。关键是分数拆分。

合做12天完成,工效和是1/12

把1/12拆分成两个单位分数

12^2=144把144写成两数积的形式,其中一个数比另一个数大10。

因为8×18=144;所以有12+8=20天。

151.甲、乙两个书架,共有书3000册,甲的册数的2/5比乙的册数的1/4多420本,求两个书架各有书多少册?

解:如果给乙的1/4加上420册,即给乙加上420*4=1680册,乙的1/4就与甲的2/5同样多。这时,甲、乙的册数比为1/4:2/5=5:8。

所以,甲书架有书:(3000+1680)*5/(5+8)=1800册;乙书架有书:3000-1800=1200册。

152.姐弟两人打印一批稿件,姐姐单独打印需要的时间是弟弟所需时间的3/8,姐姐先打印了这批稿件的2/5后,接着由弟弟单独打印,用24小时打印完,问姐姐打印了多少小时?

解法一:

另外的1-2/5=3/5如果弟弟做,需要的时间就相当于姐姐的3/5÷3/8=8/5,

所以姐姐单独打印完需要24÷(2/5+8/5)=12小时,所以姐姐打了12×2/5=4.8小时。

解法二:

姐姐单独打印需要的时间是弟弟所需时间的3/8,姐姐先打印了这批稿件的2/5需要的时间相当于弟弟完成同样任务所需总时间的2/5×3/8=3/20,

接着由弟弟单独打印,需时为总时间的3/5,两比为1/4,共计用24小时。

弟弟打剩下的3/5用时24×4/(1+4)=96/5小时,完成全部任务用96÷5÷3/5=32小时。姐姐单独打完用时是32×3/8=12小时。所以姐姐用了12×2/5=4.8小时。

153.有甲、乙两个水管向水池注水,先开甲管,开放时间是单开乙管注满水池所需时间的1/3.然后开放乙管,开放的时间是单开甲管注满水池所需时间的1/3.这样注满水池的13/18.如果甲、乙两管同时开放,注满水池需3+3/5小时,那么单开甲管或单开乙管注满水池,各需要多少小时?

解:用初中的方法解答一下。设甲管开放时间是x小时,乙管开放时间是y小时。

有x/y×1/3+y/x×1/3=13/18,解得y/x=2/3

因为1/y+1/x=5/18,所以,x=9,y=6