“最简单的数学应用题”或许能够帮助您找到对这个问题更好的回答,文档处理是管理职位必须具备的核心技能之一,范文的意义和价值已经被大众广泛认可。利用范文的架构,可以提升我们的写作水平,你积累了多少优秀的范文呢?请记住将本网页的链接加入到您的书签列表中!...

活动范文 > 试题 > 导航 > 最简单的数学应用题9篇

最简单的数学应用题

2024-01-26

相关推荐

最简单的数学应用题9篇。

“最简单的数学应用题”或许能够帮助您找到对这个问题更好的回答,文档处理是管理职位必须具备的核心技能之一,范文的意义和价值已经被大众广泛认可。利用范文的架构,可以提升我们的写作水平,你积累了多少优秀的范文呢?请记住将本网页的链接加入到您的书签列表中!

最简单的数学应用题 篇1

1、体育用品有90个乒乓球;如果每两个装一盒;能正好装完吗?如果每五个装一盒;能正好装完吗?为什么?

90÷2=45盒

90÷5=18盒

答:如果每两个装一盒;能正好装完如果每五个装一盒;也能正好装完。因为90能整除五。

2、体育店有57个皮球;每三个装在一个盒子里;能正好装完吗?

57÷3=19盒

答:能正好装完。

3、甲;乙两个人打打一份10000字的文件;甲每分打115个字;乙每分钟打135个字;几分钟可以打完?

10000÷(115+135)=40分

答:40分钟可以打完。

4、五年级同学植树;13或14人一组都正好分完;五年级参加植树的同学至少有多少人? 13x14=192人

答:五年级参加植树的人至少有192人.

下面几道题目虽然属于应用题;但跟方程有关。我都是用方程解答的。

5、两辆汽车从一个地方相背而行.一车每小时行31千米;一车每小时行44千米.经过多少分钟后两车相距300千米?

方程:

解:两车x时后相遇.

31x+44x=300tZW57.CoM

75x=300

x=4

4小时=240分钟

答:经过240分钟后两车相距300千米.

6、两个工程队要共同挖通一条长119米的隧道;两队从两头分别施工.甲队每天挖4米;乙队每天挖3米;经过多少天能把隧道挖通?

解:设x天后挖通隧道

3x+4x=119

7x=119

x=17

答:经过17天挖通隧道.

7、学校合唱队和舞蹈队共有140人;合唱队的.人数是舞蹈队的6倍;舞蹈队有多少人?解:设舞蹈队有x人

6x+x=140

7x=140

x=20人

答:舞蹈队有20人.

从这里开始不是方程题了.

8、兄弟两个人同时从家里到体育馆;路长1300米.哥哥每分步行80米;弟弟骑自行车以每分180米的速度到体育馆后立刻返回;途中与哥哥相遇;这时哥哥走了几分钟?

1300x2=2600米

2600÷(180+80)

=2600÷260

=10分

答:这时哥哥走了10分钟.

9、六一儿童节;王老师买了360块饼干;480块糖;400个水果;制作精美小礼包;分给小朋友作为礼物;至多可做几个小礼包?

360+480+400=1240个

答:至多可做1240个小礼包.

10、淘气买了40个气球;请同学来家比吹气球.为了能把气球平分;淘气应该请几个同学来比吹气球?淘气不参加.

40÷2=20人40÷4=10人40÷5=8人

40÷8=5人40÷10=4人40÷20=2人

答:请同学的方法有6种;分别是:20人;10人;5人;8人;4人;2人.

11、一块梯形的玉米地;上底15米;下底24米;高18米.每平方米平均种玉米9株;这块地一共可种多少株玉米?

(15+24)x18÷2=351平方米

351x9=3195株

答:这块地可种玉米3159株.

12、某班学生人数在100人以内;列队时;每排5人;4人;3人都刚好多一人;这班有多少人?

5x4x3=60人60+1=61人

答:这班有61人.

13、王月有一盒巧克力糖;每次7粒;5粒;3粒的数都余1粒;这盒巧克力糖至少有多少粒?

7x5x3=105粒105+1=106粒

答:这盒巧克力糖至少有106粒.

14、晨光小区有一段长15米;宽1.2米的长方形甬道要铺方砖.设计师准备了边长是30厘米的方砖;请你算一算:需要几块这样的方砖?如果每块方砖3元;那么铺这段甬道需要多少元?

15米=150分米1.2米=12分米30厘米=3分米

150x12=1800平方分米3x3=9平方分米

1800÷9=200块200x3=600元

答:需要200块这样的方砖;需要600元.

15、有两块面积相等的平行四边形实验田;一块底边长70米;高45米;另一块底边长90米;高是多少米?

70x45=3150平方米3150÷90=35米

答:高是35米.

16、一批钢管叠成一堆;最下层有10根;每上1层少放1根;最上1层放了5根.这批钢管有多少根?

10-5+1=6层(10+5)x6÷2

=15x6÷2

=90÷2

=45根

答:这批钢管有45根.

17、有一些糖果;平均分别给21个小朋友剩20块;平均分给35个小朋友剩34块;平均分给56个小朋友剩55块。你知道这堆糖果至少有多少块吗?

解:21、35、56的最小公倍数是840;840-1=839(块)

答:这堆糖果至少有839块

18、2台同样的抽水机;3小时可以浇地1.2公顷;1台抽水机每小时可以浇地多少公顷?

1.2÷3=0.4 0.4÷2=0.2

19、前年小明比妈妈小24岁;今年妈妈的年龄是小明的3倍。小明和妈妈今年分别是多少岁?

设小明年龄是x;

则3x-x=24 x=12

小明12;妈妈36

20、一个立方体的棱长总和是48分米;它的表面积和体积各是多少?

解:48÷12=4分米

则表面积为4x4=16平方分米

16x6=96平方分米

体积为4x4x4=64立方分米

最简单的数学应用题 篇2

1、一根圆柱形的木料长2米,截成相等的3段,表面积增加24平方厘米,原来的木料的体积是多少立方厘米?

2、一个圆锥形麦堆的底面周长12.56 米,高1.2 米,如果每立方米小麦重500千克。这堆小麦重多少吨?

3、一个长方形的长8厘米,宽4.56厘米,与这个长方形周长相等的圆的面积是多少?

4、小升初数学知识点复习:应用题练习题:一块三角形地的面积是0.8公顷,它的底是400米,它的.高是多少米?

5、一块白布是边长2米的正方形,剪成直角边是2分米的等腰直角三角形小三角巾,最多可以剪多少块?

6、用12.56分米长的铅丝分别围成一个正方形和圆,圆的面积比正方形面积多多少?

7、小红看一本故事书,3天看了54页,照这样计算,要看完162页的这本书,还需几天?(用比例解)

8、有一个等腰三角形,它的两个角的度数比是1:2,这个三角形按角分类可能是什么三角形?

9、织布厂加工完成一批布,甲乙合作16天完成,甲单独做20天完成,乙每天织600米,这批布共多少千米。

10、甲乙从同一地点向相反的方向行驶,甲下午6时出发每小时行40000米,乙第二天上午4时出发,经过10小时后两车相距1080千米。乙车的时速是多少千米?

11、机床厂制造某种机床,每台用钢材1.5吨,实际每台节约0.25吨。结果比原计划多制造10台。原计划造机床多少台?

12、小王按批发价买进一批牙刷,每枝0.35元,零售价每枝0.40元,当还剩下200枝没卖时,小王计算扣除所有成本已获利200元。商店买来牙刷多少枝?

13、盐完全溶解在水中变成盐水,已知某种盐水中盐和水的重量比是1:10。 500克盐要加水多少千克?

14、修一条公路,前5天修了它的20%,照这样计算,修完这条路一共要多少天?

15、一台洗衣机原价1450元,现降价20%出售,但售价仍比成本高1/9。这台洗衣机成本多少元?

16、要修建一条新路,实际投资了158.8万元,比原计划节约了21.2万元。节约了百分之几?

17、单独完成一项工程,甲队要10小时,乙队要15小时。现在甲队先独做2小时,余下的乙队在参加工作,还需要多少小时完成任务?

18、小林早晨7:30从家去学校,每分钟走50米。刚到学校门口发现数学书没有带,立即沿原路返回,每分钟走70米。到家正好是7:54。小林家离学校多少米?

19、一个长方体仓库从里面量约长9米。宽6米,高5米。如果放入棱长为2米的正方体木箱,至多可以放进多少只?

20、某厂会计发现现金多了273.6元,经查帐发现原来是有一笔支出款的小数点点错了一位。问这笔款是多少元?

最简单的数学应用题 篇3

1、甲、乙两人分别从A、B两地同时出发,相向而行,乙的速度是甲的2/3,两人相遇后继续前进,甲到达B地,乙到达A地立即返回,已知两人第二次相遇的地点距离第一次相遇的地点是3000米,求A、B两地的距离.

解:第一次相遇时,两人合行了一个全程,其中乙行了全程的2÷(2+3)=2/5

第二次相遇时,两人合行了3个全程,其中乙行了全程的2/5×3=6/5

两次相遇点之间的距离占全程的2-6/5-2/5=2/5

所以全程是3000÷2/5=7500米。

解乙的速度是甲的2/3即甲速:乙速=3:2所以第一次相遇时甲走了全程的3/5,乙走了全程的2/5

第二次相遇的地点距第一次相遇甲共走了2倍全程的3/5=6/5,乙走了2倍全程的2/5=4/56/5-4/5=2/5,即相差全程的2/5A、B两地的距离=3000/(2/5)=7500米

综合:3000/[2*3/(2+3)-2*2/(3+2)]=50(千米)

76.一条船往返于甲、乙两港之间,已知船在静水中的速度为9千米/小时,平时逆行与顺行所用时间的比为2:1.一天因下雨,水流速度为原来的2倍,这条船往返共用10小时,问甲、乙两港相距多少千米?

C顺水速度是逆水速度的2倍,那么逆水速度就是水流速度的2倍,静水速度就是水流速度的3倍,所以水流速度是9÷3=3千米/小时

下雨时,水流速度是3×2=6千米/小时,

逆行速度是9-6=3千米/小时

顺行速度是9+6=15千米/小时

所以往返时,逆行时间和顺行时间比是5:1

所以顺行时间是10÷(5+1)=5/3小时

所以甲乙两港相距5/3×15=25千米

解:无论水速多少,逆水与顺水速度和均为9*2=18

故:

水速FlowSpeed=18/3/2=3;

船速ShipSpeed=FlowSpeed+18/3=9;

whenrains,Flowspeed=6;

顺水s1=9+6=15;

逆水s2=9-6=3;

顺水单程时间10*(3/(15+3))=5/3;

so,相距5/3*15=25km

2.某学校入学考试,确定了录取分数线,报考的学生中,只有1/3被录取,录取者平均分比录取分数线高6分,没有被录取的同学其平均分比录取分数线低15分,所有考生的平均分是80分,问录取分数线是多少分?

解:假设每组三人,其中3×1/3=1人被录取。每组总得分80×3=240分。录取者比没有被录取者多6+15=21分。所以,没有被录取的分数是(240-21)÷3=73分所以,录取分数线是73+15=88分

解:因为没录取的学生数是录取的学生数的:

(1-1/3)/1/3=2倍,二者的平均分之间相差:15+6=21分的距离,所以,在均衡分数时,没录取的学生平均分每提高一分,录取的学生的平均分就要降低2分,这样二者的分差就减少了3分,21/3=7,即要进行7次这样的均衡才能达到平均分80分,在这个均衡过程中,录取的学生的平均分降低了:2*7=14分,

所以,录取分数线是:80+14-6=88分,

3.一群学生搬砖,如果有12人每人各搬7块,其余的每人搬5块,那么最后余下148块;如果有30人每人各搬8块,其余的每人搬7块,那么最后余下20块.问学生共有多少人?砖有多少块?

解:如果每人搬7块,就会余下30×(8-7)+20=50块

所以搬5块的人有(148-50)÷(7-5)=49人

所以学生共有12+49=61人,砖有61×7+50=477块。

解:12人每人各搬7块,当他们搬8块的时候,多搬了12块

18人每人各搬5块,当他们搬动8块的时候,多搬了18*3=54块

所以30人多搬了54+12=66块其余人搬动了148-20-66=62块

而这些其它人每人多搬动了2块,所以其他人的人数为62/2=31

所以,一共有学生61人

砖块的数量:12*7+49*5+148=477

解:把30人分成12人和18人两部分,12人每人各搬7块,若他们搬8块,则多搬了12*1=12块,18人每人各搬5块,若他们搬8块,则多搬了18*3=54块,

所以30人多搬了54+12=66块其余人搬动了148-20-66=62块,而这些其它人每人多搬动了7-5=2块,所以其他人的人数为62÷2=31所以,一共有学生61人砖块的数量:12*7+49*5+148=477块

最简单的数学应用题 篇4

和差问题的公式

(和+差)÷2=大数

(和-差)÷2=小数

和倍问题

和÷(倍数-1)=小数

小数×倍数=大数

(或者 和-小数=大数)

差倍问题

差÷(倍数-1)=小数

小数×倍数=大数

(或 小数+差=大数)

植树问题

1 非封闭线路上的植树问题主要可分为以下三种情形:

(1)如果在非封闭线路的两端都要植树,那么:

株数=段数+1=全长÷株距-1

全长=株距×(株数-1)

株距=全长÷(株数-1)

(2)如果在非封闭线路的一端要植树,另一端不要植树,那么:

株数=段数=全长÷株距

全长=株距×株数

株距=全长÷株数

(3)如果在非封闭线路的两端都不要植树,那么:

株数=段数-1=全长÷株距-1

全长=株距×(株数+1)

株距=全长÷(株数+1)

2 封闭线路上的植树问题的数量关系如下

株数=段数=全长÷株距

全长=株距×株数

株距=全长÷株数

盈亏问题

(盈+亏)÷两次分配量之差=参加分配的份数

(大盈-小盈)÷两次分配量之差=参加分配的份数

(大亏-小亏)÷两次分配量之差=参加分配的份数

相遇问题

相遇路程=速度和×相遇时间

相遇时间=相遇路程÷速度和

速度和=相遇路程÷相遇时间

追及问题

追及距离=速度差×追及时间

追及时间=追及距离÷速度差

速度差=追及距离÷追及时间

流水问题

(1)一般公式:

顺流速度=静水速度+水流速度

逆流速度=静水速度-水流速度

静水速度=(顺流速度+逆流速度)÷2

水流速度=(顺流速度-逆流速度)÷2

(2)两船相向航行的`公式:

甲船顺水速度+乙船逆水速度=甲船静水速度+乙船静水速度

(3)两船同向航行的公式:

后(前)船静水速度-前(后)船静水速度=两船距离缩小(拉大)速度

浓度问题

溶质的重量+溶剂的重量=溶液的重量

溶质的重量÷溶液的重量×100%=浓度

溶液的重量×浓度=溶质的重量

溶质的重量÷浓度=溶液的重量

利润与折扣问题

利润=售出价-成本

利润率=利润÷成本×100%=(售出价÷成本-1)×100%

涨跌金额=本金×涨跌百分比

折扣=实际售价÷原售价×100%(折扣

利息=本金×利率×时间

税后利息=本金×利率×时间×(1-5%)

工程问题

(1)一般公式:

工作效率×工作时间=工作总量

工作总量÷工作时间=工作效率

工作总量÷工作效率=工作时间

(2)用假设工作总量为“1”的方法解工程问题的公式:

1÷工作时间=单位时间内完成工作总量的几分之几

1÷单位时间能完成的几分之几=工作时间

最简单的数学应用题 篇5

小学数学除了简单的计算,到了小学高年级阶段,开始出现应用题。应用题是把含有数量关系的实际问题用文字叙述出来所形成的题目。下面是关于小学数学倍数的应用题,一起来练习吧!

【倍数问题】

一、求一个数的几倍就乘以几,要用乘法

1.  3的5倍是多少?

3x5=15 答:3的5倍是15。

2. 4的10倍是多少?

3. 7的9倍是多少?

二、求一个数是另一个数的几倍,用除法,用大数除以小的数

1.  45是9的多少倍?

2. 45÷9=5 答:45是9的5倍。

3. 35是5的多少倍?

4. 72是8的多少倍?

【应用问题】

(一)、求一个数的几倍是多少?

公式 :小数  ×  倍  数  =大 数

相当于:平均数×  份  数  =总数

相当于:1倍数X倍  数  = 几倍的数

相当于:每份数X份数 =  总  数

1、小明今年9岁,爸爸的年龄是小玲的5倍,爸爸今年多少岁?

2、买一支笔2元钱,买60支这样的笔要多少钱?

能吃多少只害虫?

(二)、求一个数是另一个数的几倍?

公式:  大数  ÷  小  数  = 倍数

相当于: 几倍的数  ÷ 1倍数=  倍数

相当于:总 数  ÷  平均数 = 份 数

相当于:总数  ÷  每份数 =  份 数

1、小明今年9岁,爸爸今年45。爸爸的年龄是小玲的几倍?

2、买一支笔2元钱,花120元可以买多少支这样的笔要多少钱?

3、三个同学做纸花。做了24朵红花,6朵黄花。红花是黄花的几倍?

班共有46名学生,每两人用一张课桌,一共需要多少张课桌?把这些课桌每4张摆一行,能摆多少行?还剩几张?

(三)、求一倍数?

公式:大  数  ÷ 倍数  = 小数

相当于: 几倍的数  ÷ 倍数= 1倍 数

相当于:  总  数  ÷ 份数= 平均数

相当于:  总  数  ÷ 份  数 = 每份数

1、爸爸今年45岁,是小玲年龄的5倍,小明今年多少岁?

2、一只东北虎的重量是360千克,大约是一只鸵鸟的`4倍,是一只企鹅的4倍,是一只企鹅的9倍。问鸵鸟多少千克?企鹅多少千克?

3、买一支笔2元钱,花120元可以买多少支这样的笔要多少钱?

4、饲养小组有母鸡12只,恰好是公鸡的3倍,公鸡有几只?

5、图书馆买来40本故事书,是科技书的5倍,科技书几本?

6、一只海狮重378千克,是一只企鹅体重的9倍。这只企鹅的体重是多少千克?

8、公园运来160盆花,准备摆在4个花坛里。平均每个花坛摆多少盆花?

9、一部儿童电视剧共336分钟。分8集播放,每集大约播放多长时间?

星光小学832名学生分4批去参观天文馆。平均每批有多少人?

奥林匹克火炬在某地传递4天传递了816千米。平均每天传递了多少千米?

有530把椅子,分5次运完。平均每次运多少把?如果分4次运呢?

丁小林家到学校有450米。他每天上学大约走8分钟,他每分钟大约走多少米?

三年级的225名学生要乘5辆车去春游。如果每辆车坐的人同样多,每辆车应该坐多少人?

(四)几倍多几?

公式:小数1×倍数+小数2=大数

1、文具店运来三箱红墨水,每箱100瓶。运来的兰墨水比红墨水多200瓶,运来兰墨水多少瓶?

2、一只猴子重25千克,一头熊猫的体重比猴子的6倍还多12千克一头熊猫的体重是多少?

(五)几倍少几 ?

公式:小数1×倍数-小数2=大数

1、王大伯前年养猪2头,去年养猪头数是前年的3倍,到年底卖了4头,还有几头?

2、一个牧民养了76只山羊,养的绵羊比山羊的4倍少16只。这个牧民养了多少只绵羊?

3、一户菜农去年收黄瓜520千克。收的西红柿是黄瓜的3倍,收的茄子比西红柿少260千克。收茄子多少千克?

【综合题】

1、三年级的学生去茶园里劳动。女生有56人,男生有64人。4名学生分成一组,一共可以分成多少组?

【倍数的综合——比较问题】

1、一个单位有620人到温泉山庄度假。1辆大客车能坐58人,11辆大客车能一次送走这些人吗?

2、小梦和小欣整理照片。一共有238张照片。每页可插6张要插多少页?如果一本相册有24页,1本相册能插得下这些照片吗?2本呢?

最简单的数学应用题 篇6

关于小升初数学应用题公式集锦

小升初数学应用题各类型公式集锦,包括植树问题、盈亏问题、相遇问题、追及问题、流水问题、浓度问题、利润与折扣问题公式。

植树问题 :

1. 非封闭线路上的植树问题主要可分为以下三种情形:

⑴如果在非封闭线路的两端都要植树,那么:

株数=段数+1=全长÷株距-1

全长=株距×(株数-1)

株距=全长÷(株数-1)

⑵如果在非封闭线路的一端要植树,另一端不要植树,那么:

株数=段数=全长÷株距

全长=株距×株数

株距=全长÷株数

⑶如果在非封闭线路的两端都不要植树,那么:

株数=段数-1=全长÷株距-1

全长=株距×(株数+1)

株距=全长÷(株数+1)

2. 封闭线路上的植树问题的'数量关系如下

株数=段数=全长÷株距

全长=株距×株数

株距=全长÷株数

盈亏问题 :

(盈+亏)÷两次分配量之差=参加分配的份数

(大盈-小盈)÷两次分配量之差=参加分配的份数

(大亏-小亏)÷两次分配量之差=参加分配的份数

相遇问题 :

相遇路程=速度和×相遇时间

相遇时间=相遇路程÷速度和

速度和=相遇路程÷相遇时间

追及问题 :

追及距离=速度差×追及时间

追及时间=追及距离÷速度差

速度差=追及距离÷追及时间

流水问题 :

顺流速度=静水速度+水流速度

逆流速度=静水速度-水流速度

静水速度=(顺流速度+逆流速度)÷2

水流速度=(顺流速度-逆流速度)÷2

浓度问题 :

溶质的重量+溶剂的重量=溶液的重量

溶质的重量÷溶液的重量×100%=浓度

溶液的重量×浓度=溶质的重量

溶质的重量÷浓度=溶液的重量

利润与折扣问题:

利润=售出价-成本

利润率=利润÷成本×100%=(售出价÷成本-1)×100%

涨跌金额=本金×涨跌百分比

折扣=实际售价÷原售价×100%(折扣<1)

利息=本金×利率×时间

最简单的数学应用题 篇7

1、把一个体积为80立方厘米的铁块浸在底面积为20平方厘米的长方体容器中,水面高度为10厘米,如果把铁块捞出后,水面高多少?

2、要制作12节长方体的铁皮烟囱,每节长2米,宽4分米,高3分米,至少要用多少平方米的铁皮?

宽3米,铺设了2厘米厚的木地板,至少需要木材多少立方米?

宽1.8米,装的煤高0.6米,平均每立方米煤重1.5吨,这辆车装的煤有多少吨?

5、一种无盖的长方体形铁皮水桶,底面是边长4分米的正方形,高1米。做一只这样的水桶至少要多少铁皮?这只水桶能装水多少升?

宽7.5米的直跑道上。煤渣可以铺多厚?

宽14米,深1.2米。现在要在四壁和池底贴上面积为16平方分米的正方形瓷砖,需要多少块?

8、一个长方体的容器,底面积是16平方分米,装的水高6分米,现放入一个体积是24立方分米的铁块。这时的水面高多少?

9、一块长方形铁皮,长32厘米,在它四个顶角分别剪去边长4厘米的正方形,然后折起来焊成一个无盖的长方体铁皮盒。已知这个铁皮盒的容积是768立方厘米。原来这块铁皮的面积是多少?

一个长方体玻璃缸,底面积是200平方厘米,高8厘米,里面盛有4厘米深的水,现在将一块石头放入水中,水面升高2厘米。这块石头的体积是多少立方厘米?

一个长方体,长4米,宽3米,高2.4米,它的占地面积最大是多少平方米?表面积是多少平方米?体积是多少立方米?

有一块棱长是80厘米的正方体的铁块,现在要把它溶铸成一个横截面积是20平方厘米的长方体,这个长方体的长是多少厘米?

一块正方体的石头,棱长是5分米,每立方米的石头大约重2.7千克,这块石头重有多少千克?

【附】《体积与容积》教学设计

教材分析:

1、通过具体的`实验活动,了解体积和容积的实际意义,初步理解体积和容积的概念。

2、体积与容积的学习是在学生认识了长方体和正方体的特点以及长方体和正方体的表面积的基础上进行的。这一内容是进一步学习体积的计算方法等知识的基础,也是发展学生空间观念的重要载体。但体积和容积又是学生比较容易混淆的两个概念。

学情分析:

数学教学活动必须建立在学生的认知发展水平和已有的知识经验基础上。对于概念教学,比较抽象,难于理解。学生们有着丰富的生活经验,从他们身边的事物出发,把概念变得形象化、具体化,学生会更容易接受。本课的重点是初步理解体积和容积的概念。体积的概念是物体所占空间的大小。

教学目标:

知识与技能目标:通过具体的实验活动,了解体积和容积的实际意义,初步理解体积和容积的概念。

过程与方法目标:在操作、交流中,感受物体体积的大小、发展空间观念。

情感、态度和价值观目标:增强合作精神和喜爱数学的情感。

现代教学手段:使用多媒体课件,使抽象变直观,发挥现代教育手段的优势。

教学重点和难点

教学重点:通过具体的实验活动,初步理解体积和容积的概念。

教学难点:理解体积和容积的联系和区别。

教学过程:

(一)情境导入:

师:今天老师和同学们一起来探究《体积与容积》这一课。

师:同学们,你们知道乌鸦喝水的故事吗?为什么乌鸦最后能喝到水呢?谁能把这个故事讲给大家听?(生自由发言)

(1)认识体积

1、初步感受空间。

师:老师往水里放一个苹果,苹果占空间吗?放一枚硬币,硬币占空间吗?橡皮占空间吗?铅笔盒占空间吗?桌子呢?凳子呢?还有什么东西占空间?

师:是不是所有的东西都占空间?在水里占空间,拿出来呢?(也占空间)板书:空间。

2、空间也有大小。

师:橡皮与铅笔盒比谁占得空间大,谁占得空间小?桌子与凳子呢?板书:大小

3、体积的概念。

老师叫一位学生上台,问:“你有体积吗?老师有体积吗?谁的体积大?”请这位同学变换位置,站在教室的不同地方,问:“它的体积变了吗?他的什么变了?说明了什么?”(物体的位置变化了,但体积不变)

师:“橡皮泥是什么形状的?(长方体。)把橡皮泥捏成球体,同时问:“它这时是什么形状?(球体)它的体积变了吗?他的什么变了?(形状)说明了什么?(物体的形状变化了,但体积不变。)生活中你见到过这样的事情吗?(生:妈妈把一团面擀成一个薄饼。生:奶奶把一个黄瓜切成了一片片的。)

(2)认识容积

1、出示:饮料瓶,水杯,茶叶罐。

师:请迅速给这三个物体按体积由大到小的顺序排一排。

2、认识容器。

师:他们是用来干什么的?(学生

最简单的数学应用题 篇8

1、李老师带有60元钱,正好买一个足球和两个排球。如果只买两个排球,还剩28元。一个足球多少钱?一个排球多少钱?

2、14个同学站成一队做操,从前面数张兵是第6个,从后数他是第几个?

3、有两篮苹果,第一篮25个,第二篮19个,从第一篮中拿几个放入第二篮,两篮的苹果数相等?

4、小花今年6岁,爸爸对小花说:"你长到10岁的时候,我正好40岁。"爸爸今年多少岁?

5、一辆公共汽从东站开到西站,开一趟。如果这辆车从东站出发,开了11趟之后,这辆车在东站还是西站?

6、王老师领男女学生个10名去看电影,要买几张电影票。

7、12辆摩托车组成一列向前开,从前往后数,银色摩托车是第8辆,问:从后往前数,它是第几辆?

8、小文今年10岁,比妈妈小29岁。去年他比妈妈小几岁?

9、妈妈买回一些鸭蛋和12个鸡蛋,吃了8个鸡蛋后,剩下的鸡蛋和鸭蛋同样多,问妈妈买回的鸭蛋是几个?

10、一只猫吃一只老鼠用5分钟吃完,5只猫同时吃5只同样大小的老鼠,需要几分钟才能吃完?

最简单的数学应用题 篇9

1、有一根圆柱体钢材长1米,如果把它横截成两段,表面积就增加6.28平方分米,这根圆柱体钢材的表面积是多少平方分米?

2、一节圆柱体的铁皮烟囱长1.2米,直径是0.2米,做这样的烟囱300节,至少要用铁皮多少平方米?

3.六年级一班男生人数是女生人数的7分之6.写出男生人数和全班人数的比。

4.已知甲数除以已数的商是4.25,求甲数与已数的最简整数比.

5.一块6万平方米的森林,一年大约要蒸发4.8万吨水。平均1万平方米森林一年大约蒸发多少万吨水?

6.每平方米阔叶林一天能释放氧气75克,是每平方米草地所释放氧气的5倍。每平方米草地一天能释放氧气多少克?

7.20xx年我国完成造林面积912万公顷,比20xx年增加了135万公顷。20xx年我国完成造林面积多少万公顷?

8.甲、乙两班共有学生99人,如果抽调甲班人数的十分之一去乙班后,那么甲、乙两班人数的比为5:6。这两个班原有人数各是多少?

9.开发区要开辟一片土地,每天平整0.5公顷,60天可以完成任务。现在要求提前10天完成任务,每天要比原来多平整多少公顷?(列方程解)

10.农业银行想把5元的人民币220张,完全换成2角的,可以换多少张?(用两种方法解答)