57梯子网编辑花费了很长时间来整理“最新比例的数学应用题”的所有重要资料,文档处理是我们办公自动化的必要组成部分,网上其实有很多优秀的范文供我们学习。范文构思能够让自己更加熟练地运用排比句式。你有没有收集一些标准的范文呢?...

活动范文 > 试题 > 导航 > 最新比例的数学应用题(12篇)

最新比例的数学应用题

2024-01-26

相关推荐

最新比例的数学应用题(12篇)。

57梯子网编辑花费了很长时间来整理“最新比例的数学应用题”的所有重要资料,文档处理是我们办公自动化的必要组成部分,网上其实有很多优秀的范文供我们学习。范文构思能够让自己更加熟练地运用排比句式。你有没有收集一些标准的范文呢?

最新比例的数学应用题 篇1

教学内容:课本第91页例4;练一练;《作业本》第39页。

教学目标:进一步巩固反比例的意义,掌握用反比例方法解应用题的方法和步骤。

教学重点:学会用反比例解归总应用题

教学难点:判断题中哪两个量是成反比例的量,列出等积式。

教学过程:

一、复习准备:

1、三角形面积一定,底和高成什么比例?为什么?

2、甲、乙两种量,只要它们相对应的数的积一定,这两种量一定成反比例,对吗?举例说明?

二、新授:

1、教学例4。

例4:一艘货轮每小时航行20千米,6小时可以到达目的地。如果要5小时到达,每小时航行多少千米?

观察:

⑴、题中有哪几个量?

⑵、从题中可见哪个数量是一定的?

分析:

想:因为速度时间=路程,由于4小时与3小时航行路程相同,可确定行驶的速度与时间成反比例,所以两次航行与时间的乘积相等。

解:设每小时需航行X千米。

5X=206

X=2065=24(千米)

X=24

(检验)

答:每小时需盘航行24千米。

2、改条件:5小时到达为每小时行15千米,要求几小时到达应怎样列式?

3、试一试。

(1)甲种铅笔每支0.25元,乙种铅笔每支0.20元,买甲种铅笔32支的钱,可以买乙种铅笔多少支?

(2)同学们做操,每行站30人,正好站12行,如果每行站36人,可以站多少行?

分析:⑴、从已知数量可知,哪个量是一定的?

⑵、可利用比例解题,也可利用一般方法解题?

三、巩固练习:练一练。

四、小结:

今天学习了什么?

五、《作业本》p39.

最新比例的数学应用题 篇2

1、在一幅地图上,5厘米的长度表示地面上150千米的距离,求这幅地图的比例尺。

2、在比例尺是1∶6000000的地图上,量得甲地到乙地的距离是25厘米,求两地间的实际距离。

18厘米。若一架飞机以每小时750千米的速度从北京飞往南京,大约需要多少小时?

4、混凝土的配料是水泥∶黄沙∶石子=1∶2∶3。现在要浇制混凝土楼板40块,每块重0.3吨,需要水泥、黄沙、石子各多少吨做原料?

5、一批零件,每天做56个,28天完成,如果提前12天完成,每天应做多少个?

6、某工人要做504个零件,他5天做了120个,照这样的速度,余下的还要做多少天?

7、一间大厅,用边长4分米的方砖铺地,需用324块;若改铺边长3分米的方砖,需要多用几块?

8、一根皮带带动两个轮子,大轮直径30厘米,小轮直径10厘米;小轮每分钟转300转,大轮每分钟转几转?

9、一件工程,如果34人工作需20天完成,若要提前3天完工,现在需要增加几名工人?

10、一本文艺书,每天读6页,20天可以读完,要提前8天看完,每天要比原来多看几页?

11、羊毛衫厂共有工人538人,分三个车间,第一车间比第三车间少12人,已知第二车间与第三车间的人数比是3∶4。三个车间各有多少人?照这样计算,还要多少小时才能耕完这块地?

13、学校把购进的图书的60%按2∶3∶4分配给四、五、六三个年级。已知六年级分得56本,学校共购进图书多少本?

14、小明居住的院内有4家,上月付水费9.8元,其中张叔叔家有2人,王奶奶家有4人,李阿姨家有3人,小明家有5人,若按人口计算,他们四家各应付水费多少元?

15、某生产队由15个队员收割一块双季稻,8小时能割完,但割了3小时以后,由于天气突然发生变化,增加了10个社员进行抢收,问还需多少小时才能割完这块双季稻?

最新比例的数学应用题 篇3

(1)水果店一天运进苹果、香蕉、梨共390千克,苹果的重量是梨的1.5倍,香蕉的重量是梨的3/4,三种水果各运进多少千克?

(2)一缸水,用去1/2和5桶,还剩30%,这缸水有多少桶?

(3)有一快棱长20厘米的正方体木料,刨成一个底面直径的圆柱体,刨去木料的体积是多少?

(4)一根钢管长10米,第一次截去它的7/10,第二次又截去余下的1/3,还剩多少米?

(5)两个小组装配收音机,甲组每天装配50台,第一天完成了总任务的10%,这时乙组才开始装配,每天装配40台,完成这批任务时,甲组做了多少天?

(6)修筑一条公路,完成了全长的2/3后,离中点16。5千米,这条公路全长多少千米?

(7)师徒两人合做一批零件,徒弟做了总数的2/7,比师傅少做21个,这批零件有多少个?

(8)两队修一条公路,甲队每天修全长的1/5,乙队独做7.5天修好。如果两队合修2天后,其余由乙队独修,还要几天完成?

(9)仓库里有一批化肥,第一次取出总数的2/5,第二次取出总数的1/3少12袋,这时仓库里还剩24袋,两次共取出多少袋?

(10)前轮在720米的距离里比后轮多转40周,如果后轮的周长是2米,求前轮的周长。

11、为创建海华公司,张、王、李三人分别投资100万元、120万元和80万元。在他们三人的共同努力下,到年末,公司共盈利60万元,你认为该如何合理分配这笔钱,每人分别得多少?

12、甲乙两地相距360千米,一辆汽车从甲地到乙地计划7小时行完全程,汽车的速度如下表,问能否在规定的时间内行完全程?(计算后简要说明)

13、在比例尺是的地图上,量得甲乙两地的距离为4.5厘米,如果一辆客车和货车同时从甲乙两地相对开出,经过3小时相遇。已知客车每小时行65千米,那么这辆货车每小时行多少千米?

14、在比例尺是1:3000000的地图上,量得A、B两城之间的距离是2.4厘米。在A、B两城之间有一中途停靠站C,A、B两城到C站的距离比是7:5。一辆汽车从B城到C站共用了0.6小时,求这辆汽车的速度。

15、甲乙两人分别从相距255千米的两地同时出发相向而行,已知甲乙速度比为10:7,两人相遇时各行了多少千米?

16、小淘气看一本科技书,第一天看了全书的1,第二天看了42页,这时看了的页数与剩6下的页数比是2:5,这本科技书一共有多少页?

17、把长35厘米的圆柱体按3∶2截成了一长一短两个小圆柱体后,表面积总和增加了30平方厘米。求截成的较长一个圆柱的体积。

18、一个直角三角形的周长为36厘米,三条边的长度比是3 :4 :5,这个三角形的面积是多少平方厘米?

19、一瓶盐水,盐和水的重量比是1 :24,如果再放入75克水,这时盐与水的重量比是1 :27,原来瓶内盐水重多少千克?

20、盒子里有三种颜色的球,黄球个数与红球个数的比是2 :3,红球个数与白球个数的比是4 :5。已知三种颜色的球共175个,红球有多少个?

21、两个相同的瓶子都装满了酒精溶液,一个瓶中酒精与水的体积比是3 :1,另一个瓶中酒精与水的体积比是4 :1。如果把这两个瓶中酒精溶液混合,混合溶液中酒精和水的比是多少?

22、五角人民币与贰角人民币的张数比为12 :35,那么伍角与贰角的总钱数比为多少?

23、甲、乙、丙三个数的平均数是60。甲、乙、丙三个数的比是3 :2 :1。甲、乙、丙三个数各是多少?

24、一个直角三角形的两个锐角度数的比是2 :1,这两个锐角分别是多少度?

25、大、小两瓶油共重2.7千克,大瓶的油用去0.2千克后,剩下的油与小瓶内油的重量比是3 :2。求大、小瓶里各装油多少千克?

26、甲、乙、丙三位同学共有图书108本,乙比甲多18本,乙与丙的图书数之比是5 :4,求甲、乙、丙三人各有图书多少本?

27、一个直角三角形的三条边总和是60厘米,已知三条边的比是3 :4 :5.这个直角三角形的面积是多少平方厘米?

28、一批零件分给甲、乙、丙三人完成,甲完成了总任务的30%,其余的由乙、丙按3∶4来做,丙共做了200个,问这批零件共有多少个?

29、甲、乙、丙三人的彩球数的比例为9:4:2,甲给了丙30个彩球,乙也给了丙一些彩球,比例变为2 :1 :1。乙给了丙多少个彩球?

30、某车间生产了甲、乙、丙三种配套机件共1280只,其中甲乙两种机件只数的比是3∶2,丙种机件比甲种多80只,丙种机件生产了多少只?

31、王老师用100元去买了20支圆珠笔和10支钢笔,每支钢笔的价钱和每支圆珠笔的价钱的比是3 :1。问买圆珠笔和钢笔各花了多少元?

32、甲、乙两包糖果的重量的比是4 :1,如果从甲包取出10克放入乙包后,甲、乙两包糖果重量的比变为7 :5。那么两包糖果重量的总和是多少?

33、某小学男、女生人数之比是16 :13,后来有几位女生转学到这所学校,男、女生人数之比变成为6 :5,这时全体学生共有880人,问转学来的女生有多少人?

34、小明读一本书,已读的和末读的页数比是1 :5。如果再读30页,则已读的和末读的页数之比为3 :5。这本书共有多少页?

(35)在一幅比例尺是1:30000 的地图上,量得东、西两村的距离是12.3厘米,东、西两村的实际距离是多少米?

(36)甲地到乙地的实际距离是120千米,在一幅比例尺是1:6000000的地图上,应画多少厘米?

(37)一幅地图,图上的4厘米,表示实际距离200千米,这幅图的比例尺是多少?

(38)在一幅比例尺是1:4000 的平面图上,量得一块三角形的菜地的底是12厘米,高是8厘米,这块菜地的实际面积是多少公顷?

(39)一辆汽车2小时行驶130千米。照这样的速度,从甲地到乙地共行驶5小时。甲、乙两地相距多少千米?

(40)一辆汽车从甲地开往乙地,每小时行64千米,5小时到达。如果要4小时到达,每小时需行驶多少千米?

(41)一幅地图,图上的4厘米,表示实际距离200千米,这幅图的比例尺是多少?

(42)甲、乙两地相距240千米,画在比例尺是1∶3000000的地图上,长度是多少厘米?

(43在一幅地图上,用3厘米的线段表示实际距离600千米。量得甲、乙两地的距离是4.5厘米,甲、乙两地的实际距离是多少千米?

(44) 运来一批纸装订成练习本,每本36页,可订40本,若每本30页,可订多少本?

46、大小两个圆,大圆周长与直径的比,等于小圆周长与直径的比。( )

53、从家到学校,小明用8分钟,小红用9分钟,小明和小红的速度比是8:9( )

59、因为25×12×5=1,所以25、12、5互为倒数。( )

61、10克盐溶解在100克水中,这时盐和盐水的比是1:10。( )

77、如果一个三角形的两个内角之和是100°,那么这个三角形一定是锐角三角形。( )

78、用98颗黄豆做发芽实验,结果全部发芽。这些黄豆的发芽率是98%。( )

80、扇形统计图能清楚地表明各部分数量同总数之间的关系。( )

最新比例的数学应用题 篇4

(1)水果店一天运进苹果、香蕉、梨共390千克,苹果的重量是梨的1.5倍,香蕉的重量是梨的3/4,三种水果各运进多少千克?

(2)一缸水,用去1/2和5桶,还剩30%,这缸水有多少桶?

(3)有一快棱长20厘米的正方体木料,刨成一个底面直径的圆柱体,刨去木料的体积是多少?

(4)一根钢管长10米,第一次截去它的7/10,第二次又截去余下的1/3,还剩多少米?

(5)两个小组装配收音机,甲组每天装配50台,第一天完成了总任务的10%,这时乙组才开始装配,每天装配40台,完成这批任务时,甲组做了多少天?

(6)修筑一条公路,完成了全长的2/3后,离中点16。5千米,这条公路全长多少千米?

(7)师徒两人合做一批零件,徒弟做了总数的2/7,比师傅少做21个,这批零件有多少个?

(8)两队修一条公路,甲队每天修全长的1/5,乙队独做7.5天修好。如果两队合修2天后,其余由乙队独修,还要几天完成?

(9)仓库里有一批化肥,第一次取出总数的2/5,第二次取出总数的1/3少12袋,这时仓库里还剩24袋,两次共取出多少袋?

(10)前轮在720米的距离里比后轮多转40周,如果后轮的周长是2米,求前轮的周长。

最新比例的数学应用题 篇5

关于比例的数学应用题(精选50题)

应用题一般由文字和数字相结合,给出条件,最后提取文中的数字进行正确的运算作答。应用题一直是小学数学中的难点与得分高点,很多同学也是因为应用题而与别人拉开分距。攻破应用题,既是提高数学成绩的一个重要环节,也是锻炼孩子思维理解能力的主要方式。今天,给大家准备了关于比例的数学应用题(精选50题),供大家练习,希望大家都能有一个好成绩!

最新比例的数学应用题 篇6

教学目标:

1.在自主探索学习中理解按比例分配的意义,掌握按比例分配应用题的结构特点以及解题方法,能正确解答按比例分配应用题。

2.培养发现问题、提出问题、分析问题、解决问题的能力,合作学习的能力和总纳概括的能力。

3.创设民主和谐的学习氛围,在关注培养学生主动的探索意识、灵活的思维品质过程中形成积极的学习情感。

重点与难点:

沟通比与分数之间的联系,理解按比例分配应用题的结构特征和解题方法。

教学过程:

课前让每一个学生到生活中调查某些事物各组成部分的比,并且说一说是怎么获得这些信息的。

一、引发阶段

1、情境诱发

陈叔叔和王叔叔,他们俩合资开了一家文具厂,经过一年的辛勤经营,除去交税、发工资和扩张等费用,还净多10万元。他们坐在一起商量分钱的事。(课件)(陈叔叔和王叔叔,合资开了一家文具厂,一年的净利润是10万元。他们两人各应分得多少钱?)

2.猜猜看,他们是怎么分这10万元钱的?如果我再给你这条信息---(陈叔叔和王叔叔两人投资额的比是2:3,构成例1)你还是坚持原来的观点吗?

3.陈叔叔和王叔叔各分得多少万元?你会算吗

二、探究阶段

1、自主探索

先自己独立尝试着解答,然后把你的想法告诉你们小组内的同学,说说你是怎么想的,比比谁的方法更好。

2、集体交流。

哪个小组先上台发言?其他同学可要听仔细了哦!如果有不同的解法可以补充交流,听清楚他们的方法了吗?谁再来说一遍?

其他同学有意见或不明白的地方吗?可以向发言人提问。

答案是否正确呢?你们有什么办法验证?

3、你们觉得哪种方法比较简便,和前面的知识联系最密切,而且有一定的规律性?

4、分析归纳

这种应用题有什么特点?(告诉我们总数,按照比例分成几部分)

你们在刚才的解答过程中,已经探索出了一种解决实际问题的方法,那就是按比例分配。

一个数量按照一定的比例来进行分配,这种分配方法叫做。

5、你见到过、听说过现实生活中的按比例分配的情况吗?

我省中考热点学校招生计划按比例分配

证券市场中股票发行是按比例分配的。

美国总统大选各州选票是按比例分配的。

在建筑业中也有很多地方用到按比例分配。

三、实践应用

只要你做个有心人,你一定会有很多收获。其实在你身上也藏着按比例分配的学问呢!

出示:身体中的按比例分配12周岁的儿童头部与头以下的高度的比一般是2:13。

看到这条信息,你想到了什么?说说你的身高,算一算自己的头部的高度,看看你估计得准不准?(我的身高是150厘米,我的头部高度约是多少)

四、情境延续

1.再看例1

文具厂在张叔叔和王叔叔的经营下,越来越红火。第二年,李叔叔也投资加入。他加入一年后,纯利润可能会达到多少万元?这时,他们三人各得多少万元?出示(这一年,张、王、李三人的投资分别是4万元,5万元,3万元)

2.尝试解答,同桌互相讨论。

3.展示交流各种方法,你打算如何检验?

4.这题与刚才做的题有什么相同点和不同点?

相同点:都告诉我们总数,都是按照比例分成几部分(都可以看成占总数的几分之几)

不同点:刚才是两种量的比,现在是三种量的比。

五、发展应用:

1、有些同学不但数学学得好,还十分爱看书。学校校长非常支持,决定投入6000元,添置一些科技书、故事书和优秀作文选。假如你是校长,会把这6000元按照怎样的比来分配?

1:2:3代表什么?你为什么要这样设定?

1:1:1表示什么意思?(平均分)

请你选择其中的一个比,算一算各花多少钱?

反馈交流。

有用1:1:1来解的吗?哪种解法最简单?

按1:1:1分配就是平均分,平均分是特殊的按比例分配。

2、甲乙两数的平均数是25,两数之比为2:3。求甲数与乙数。

3、六年级有92名学生参加三个课外兴趣小组。第一组与第二组人数的比是2:3,第一组与第三组人数的比是3:4。三个小组各有多少人?

六、反思评价

1.在这节课中,你最喜欢哪一部分知识的学习?为什么?还有什么疑惑吗?

2.在这节课中,你的同桌哪些地方最值得你学习?

最新比例的数学应用题 篇7

1、用同样的方砖铺地,铺20平方米要320块,如果铺42平方米,要用多少块方砖?

2、一间教室,用面积是0.16平方米的方砖铺地,需要275块,如果用面积是0.25平方米的方砖铺地,需要方砖多少块?

3、建筑工地原来用4辆汽车,每天运土60立方米,如果用6辆同样的汽车来运,每天可以运土多少立方米?

4、我国发射的人造地球卫星绕地球运行3周约3.6小时,运行20周约需多少小时?

5、一种铁丝,7.5米长重3千克,现在有19.5米长的这种铁丝,重多少千克?

6、汽车在高速公路上3小时行240千米,照这样计算,5小时行多少千米?

7、修一条公路,4天修了200米,照这样计算,又修了6天,又修了多少米?

8、小明读一本书,每天读12页,8天可以读完。如果每天多读4页,几天可以读完?

9、今春分配给学校一些植树任务,每天栽200棵6天可以完成任务,现在需要4天完成任务,实际每天比原计划多栽多少棵?

10、农场用3辆拖拉机耕地,每天共耕225公顷,照这样速度,用5辆同样拖拉机,每天共耕地多少公顷?

11、一艘轮船,从甲地从开往乙地,每小时航行20千米,12小时到达,从乙地返回甲地时,每小时多航行4千米,几小时可以到达?

12、100千克黄豆可以榨油13千克,照这样计算,要榨豆油6.5吨,需黄豆多少吨?

13、学校计划买54张桌子,每张30元,如果这笔钱买椅子,可以买90张,每张椅子多少钱?

14、一对互相咬合的齿轮,主动轮有20个齿,每分钟转60转,如果要使从动轮每分钟转40转,从动轮的齿数应是多少?

15、把3米长的竹竿直立在地面上,测得影长1.2米,同时测得一根旗杆的影长为4.8米,求旗杆的高是多少米?

16、一个机器零件长5毫米,画在图纸上是4厘米,求这幅图纸的比例尺。(5分)

17、地图上的26厘米,在比例尺为1∶1300000的地图上约是多少千米?(5分)

18、李师傅计划生产450个零件,工作8小时后还差330个零件没有完成,照这样速度,共要几小时完成任务?

19、用一批纸装订同样的练习本,如果每本30页,可以装订80本。如果每本页数减少20%,这批纸可以装订多少本?

20、某印刷厂计划四月份印刷课本20000本,结果8天就印刷了5600本,照这样速度,四月份能印多少本?

21、食堂有一批煤,计划每天烧105千克可以烧30天。改进烧煤技术后,每天烧煤90千克,这批煤可以多烧多少天?

22、跃进机床厂原计划30天制造机床200台,结果做20天就只差40台没有做,照这样计算,可以提前几天完成任务?

23、农场挖一条水渠,头5天挖了180米,照这样速度,又用了16天挖完这条水渠。这条水渠全长多少米?

24、在比例尺是1:6000000的地图上,量得两地距离是5厘米,甲乙两车同时从两地相向而行,3小时后两车相遇。已知甲乙两车的速度比是2:3,求甲乙两车的速度各是多少千米?

25、 一幅地图,图上20厘米表示实际距离10千米,求这幅地图的比例尺?

25、一列火车从甲地开往乙地,5小时行了350千米,照这样计算,共要行9小时。甲乙两地相距多少千米?

26、 英华小学有一块长120米、宽80米的长方形操场,画在比例尺为1 :4000的平面图上,长和宽各应画多少厘米?(6分)

27、 修一条路,如果每天修120米,8天可以修完;如果每天修150米,几天可以修完?(用比例方法解)

28、 同学们做操,每行站20人,正好站18行。如果每行站24人,可以站多少行?(用比例方法解)

29、 飞机每小时飞行480千米,汽车每小时行60千米。飞机行4 小时的路程,汽车要行多少小时?(用比例方法解)

30、 修一条公路,每天修0.5千米,36天完成。如果每天修0.6千米,多少天可修完?(用比例方法解)

最新比例的数学应用题 篇8

一、判断。

1.某班男生有8人,女生有10人,男生与女生人数之比是0.8。( )

2.甲、乙二人同时走同一条路,甲走完需20分钟,乙走完需30分钟,甲和乙的速度比是2∶3。( )

3.在比例尺是8∶1的图纸上,2厘米的线段表示零件的实际长16厘米。( )

4.两个圆的周长比是2∶3,面积之比是4∶9。( )

二、选择题

1、固定电话先收座机费24元,以后按一定标准时间加收通话费,则每月应交电话费与通话时间( )

A.成正比例 B.成反比例 C. 不成比例

三、解答应用题。

1、在一幅地图上,5厘米的长度表示地面上150千米的距离,求这幅地图的比例尺。

2、在比例尺是1∶6000000的地图上,量得甲地到乙地的距离是25厘米,求两地间的实际距离。若一架飞机以每小时750千米的速度从北京飞往南京,大约需要多少小时?

3、混凝土的配料是水泥∶黄沙∶石子=1∶2∶3。现在要浇制混凝土楼板40块,每块重0.3吨,需要水泥、黄沙、石子各多少吨做原料?

4、一艘轮船,从甲港开往乙港,每小时航行25千米,8小时可以到达目的地.从乙港反回甲港,每小时航行20千米,几小时可以到达?

5、某工人要做504个零件,他5天做了120个,照这样的速度,余下的还要做多少天?

6、一间大厅,用边长6分米的方砖铺地,需用324块;若改铺边长4分米的方砖,需要多用几块?

7、一根皮带带动两个轮子,大轮直径30厘米,小轮直径10厘米;小轮每分钟转300转,大轮每分钟转几转?

8、一件工程,如果34人工作需20天完成,若要提前3天完工,现在需要增加几名工人?

9、一本文艺书,每天读6页,20天可以读完,要提前8天看完,每天要比原来多看几页?

10、羊毛衫厂共有工人538人,分三个车间,第一车间比第三车间少12人,已知第二车间与第三车间的人数比是3∶4。三个车间各有多少人?

11、学校把购进的图书的60%按2∶3∶4分配给四、五、六三个年级。已知六年级分得56本,学校共购进图书多少本?

12、小明居住的院内有4家,上月付水费39.2元,其中张叔叔家有2人,王奶奶家有4人,李阿姨家有3人,小明家有5人,若按人口计算,他们四家各应付水费多少元?

13、某生产队由15个队员收割一块双季稻,8小时能割完,但割了3小时以后,由于天气突然发生变化,增加了10个社员进行抢收,问还需多少小时才能割完这块双季稻?

最新比例的数学应用题 篇9

正比例∶

(1) 珍珍看50页的故事书要花35分钟,看250页需要几分钟?

(2) 牛牛超级市场促销苦瓜汽水,3瓶特价25元。那购买9瓶要花多少元?

(3) 1公升的红茶加12公克的'糖最好喝,那请问几公升的红茶加20公克的糖最好喝?

(4) 4张邮票44元,96元可买邮票多少张?

(5) 2个首饰盒定价80元,买7个要多少元?

(6) 小明做4小时工作可获薪金112元,那么他做7小时能获得多少元?

(7) 薯片9包卖63元,4包卖多少元?

(8) 48只鸡蛋可装成4盒,144只鸡蛋可装成多少盒?

(9) 5筒朱古力豆有250粒,4筒共有多少粒?

(10)2辆的士可载10人,16辆的士可载多少人?

反比例∶

(1) 小红看一本儿童小说,每天看12页,10天可以看完;如果每天看15页,多少天可以看完?

(2) 一个车间装配一批电视机,如果每天装50台,60天完成任务,如果要用40天完成任务,每天应装多少台?

(3) 生产一批零件,计划每天生产160个,15天可以完成,实际每天超产80个,可以提前几天完成?

(4) 一艘轮船,从甲港开往乙港,每小时航行25千米,8小时可以到达目的地.从乙港反回甲港,每小时航行20千米,几小时可以到达?

(5) 用边长20厘米的方砖铺一块地,需要2000块,如果改用边长为40厘米的方砖铺地,需要多少块?

(6) 运来一批纸装订成练习本,每本36页,可订40本,若每本30页,可订多少本?

(7) 一间房子用方块铺地,用8平方米的方砖铺,需要240块,如果改用10平方米的方块砖,需要多少块?

(8) 一堆煤用载重4吨的汽车运需20辆才能一次运完,如果改用载重5吨的汽车运,需要几辆才能运完?

(9) 修一条公路,每天修900米,5天可修完,若要20天修完,每天修多少米?

(10)学生参加搬砖劳动,每人搬36块,需要5人才搬完,照这样计算,若果9人去搬,每人搬多少块?

最新比例的数学应用题 篇10

教学目标

1.使学生理解按比例分配问题的意义。

2.使学生掌握按比例分配应用题的结构及解答方法。

3.掌握解题关键:根据比算出总份数及各部分量占总数量的几分之几。

教学重点和难点

1.理解按比例分配问题的意义。

2.掌握怎样根据比算出总份数及各部分量占总数量的几分之几的解题方法。

教学过程设计

(一)复习准备

1.复习比的有关知识,为学习新知识做准备。

已知六年级1班男生人数和女生人数的比是3∶4。

男生人数与全班人数的比是()∶()。

女生人数与全班人数的比是()∶()。

2.创设情境,提出课题。

(1)妈妈有10块糖,平均分给哥哥和弟弟。每人可以得到几块糖?(每人可分到5块糖。)

提问:妈妈是怎样分的?(平均分)

(2)如果妈妈分给弟弟6块,分给哥哥4块,弟弟和哥哥糖数的比是多少?(弟弟和哥哥糖数的比是3∶2。)

提问:这样分还是平均分吗?

日常生活中,很多分配问题并不是平均分配,那么,你们想知道还可以按照什么分配吗?好,今天我们继续研究有关分配的问题。

(二)学习新课

1.讲解例2。

例2一个农场计划在100公顷的地里种大豆和玉米,播种面积的比是3∶2。两种作物各播种多少公顷?

(1)这道题是一道分配问题的应用题,想一想:分谁?按照什么分?求的是什么?

(2)分析思考:看到播种大豆和玉米面积的比是3∶2这句话你想到了哪些倍数关系?小组讨论。

④玉米的面积与播种总面积的比是2∶5,玉米面积是播种面积的

各小组选代表汇报,教师提前把学生要汇报的内容制成活动投影片,逐步出现。

(3)解答例2。

①试试看,用你学过的知识来解答例2,并在学习小组内说说你是怎样想的?

②说说你是怎样做的?

方法a:3+2=5

播种大豆的面积10053=60(公顷)

播种玉米的面积10052=40(公顷)

方法b:总面积平均分成的份数为

3+2=5

③比较一下这几种方法中哪种方法更好一些?为什么?(第二种方法好,好想好算。)

说说这种方法的思路?(播种大豆和玉米面积的比是3∶2,就是说,在100公顷的地里,大豆地占3份,玉米地占2份,一共是5份,也就

(4)这道题做得对不对?如何进行检验?请你检验一下同组同学做得对不对?(可以把求得的大豆和玉米的总面积相加,看是不是等于播种的总面积。或者可以把求得的大豆和玉米写成比的形式,看化简后是不是等于3∶2。)

2.练习:第62页中的做一做(1)。

六一班和六二班订《少年科学》的人数比是3∶4,两个班共订了49份。两个班各订了多少份?

(1)弄懂题意。

(2)提问:这道题分配的是什么?按照什么进行分配?(这道题分配的是49份报纸,按照3∶4的比例分给六一班和六二班。)

(3)独立完成。组员之间互相检验。

3.学习例3。

例3学校把栽280棵树的任务,按照六年级三个班的人数分配给各班。一班有47人,二班有45人,三班有48人。三个班各应栽树多少棵?

(1)小组讨论:这道题分配的是什么?按照什么来分配?(分配的是280棵树,按照一班、二班、三班的人数的比来分配。)

(2)提问:根据一班、二班、三班人数怎样算出各班栽的棵数占总棵数的几分之几?

(3)请你在练习本上独立完成。

①三个班的总人数:

47+45+48=140(人)

②一班应栽的棵数:

③二班应栽的棵数:

④三班应栽的棵数:

答:一班、二班、三班分别栽树94棵、90棵、96棵。

(4)同组同学互相检验。

4.练习:第62页中的做一做(2)。

一种什锦糖是由奶糖、水果糖和酥糖按照3∶5∶2混合成的。要配制这样的水果糖500千克,需要奶糖、水果糖和酥糖各多少千克?

(1)在练习本上独立完成。

(2)同组同学互相检验。

(三)课堂总结

今天这节课我们学习了什么知识?(板书课题:按比例分配应用题)想想看这种应用题有什么特点?(已知总数量和部分量的比,求部分量是多少。)解答这种应用题怎样想?(把一个总数量按照一定的比来进行分配,就要先求出总份数,再看各部分量占总数量的几分之几,接着就可以求出各部分量。)

回到准备题,问:平均分按几比几分配的?是不是按比例分配的应用题?指出平均分应用题是按比例分配的应用题的一种特殊情况。

(四)巩固反馈

1.填空练习:

①把35千克苹果平均分成7份,每份()千克,2份()千克,5份是()千克。

2.专业户王大伯共养鸡和鸭2100只。鸡和鸭只数的比是4∶3。王大伯各养了多少只鸡和鸭?

3.第62页的做一做(3)。

一个三角形三条边的长度比是3∶5∶4,这个三角形的周长是36厘米。三条边的长度分别是多少厘米?

与练习题2有什么区别?

如果求它的最短边、最长边怎么求?

4.判断练习:(正确举,错误举)

一个长方形的周长是20分米,长与宽的比是3∶2,这个长方形的长和宽各是多少分米?

(五)布置作业

第63页第1,2,3,4题。

课堂教学设计说明

本节课的复习分为两部分:首先是复习比的有关知识,为学习新知识做准备,接着通过与学生生活实际密切联系的题目为学习新知识创设情境,从而提出课题。学习新课部分中,例2、例3的教学有扶有放,例2侧重于引导、讲解;例3则是先让学生分小组讨论,之后独立完成,最后说说怎么想的,从而掌握解题关键。巩固反馈部分由易到难,逐步提高。第4题是学生很容易错的一道题,所以采用了判断的方法,指出易错的地方,引起学生注意。

本节课采用小组协作学习的教学方法,课堂气氛活跃,调动了学生学习的积极性和主动性。

最新比例的数学应用题 篇11

数学正反比例应用题(精选50题)

应用题一般由文字和数字相结合,给出条件,最后提取文中的数字进行正确的运算作答。应用题一直是小学数学中的难点与得分高点,很多同学也是因为应用题而与别人拉开分距。攻破应用题,既是提高数学成绩的一个重要环节,也是锻炼孩子思维理解能力的主要方式。今天,大家准备了数学正反比例应用题(精选50题),供大家练习,希望大家都能有一个好成绩!

最新比例的数学应用题 篇12

教学要求:

1.使学生认识正、反比例应用题的特点,理解、掌握用比例知识解答应用题的解题思路和解题方法,学会正确地解答基本的正、反比例应用题。

2.进一步培养学生应用知识进行分析、推理的能力,发展学生思维。

教学重点:认识正、反比例应用题的特点。

教学难点:掌握用比例知识解答应用题的解题思路。

教学过程:

一、复习引新

1.判断下面的量各成什么比例。

(1)工作效率一定,工作总量和工作时间。

(2)路程一定,行驶的速度和时间。

让学生先分别说出数量关系式,再判断。

2.根据条件说出数量关系式,再说出两种相关联的量成什么比例,并列出相应的等式。

(1)一台机床5小时加工40个零件,照这样计算,8小时加工64个。

(2)一列火车行驶360千米。每小时行90千米,要行4小时;每小时行80千米,要行x小时。

指名学生口答,老师板书。

3.引入新课。

从上面可以看出,生产、生活中的一些实际问题,应用比例的知识,也可以根据题意列一个等式。所以,我们以前学过的一些应用题,还可以应用比例的知识来解答。这节课,就学习正、反比例应用题。(板书课题)

二、教学新课

1.教学例1。

(1)出示例1,让学生读题。

提问:以前我们是怎样解答的(板书算式)先求什么,是按怎样的数量关系式来求的这道题里哪个数量是不变的量

(2)说明:这道题还可以用比例知识解答。

提问:题里照这样计算说明什么一定数量之间有怎样的关系式,两种相关联的量成什么比例关系题里两次抽水的总量与时间对应数值各是多少这两次对应数值的什么相等你能根据对应数值的比值相等,列出等式来解答吗请大家自己试一试(启发弄清要设未知数x)。学生练习解题,然后口答,老师板书。追问:按过去的方法是先求什么再解答的先求单一量的应用题现在用什么比例关系解答的

(3)小结:

提问:谁来说一说,用正比例知识解答这道应用题要怎样想怎样做指出:先按题意列关系式判断成正比例,再找出两种相关联量里相对应的数值,然后根据正比例关系里比值一定,也就是两次抽水相对应数值比的比值相等,列等式解答。

2.教学改编题。

出示改变的问题,让学生说一说题意。请同学们按照例1的方法自己在练习本上解答。同时指名一人板演,然后集体订正。指名说一说是怎样想的,列等式的依据是什么。

3.教学例2。

(1)出示例2,学生读题。

提问:以前我们是怎样解答的(板书算式)这样解答先求什么是按怎样的数量关系式来求的(板书:速度时间=路程)这道题里哪个数量是不变的量?

(2)谁能仿照例l的解题过程,用比例知识来解答例27请来试一试。指名板演,其余学生做在练习本上。学生练习后提问是怎样想的。速度和时间的对应关系怎样,检查列式解答过程,结合提问弄清为什么列成积相等的等式解答。

(3)提问:按过去的方法是先求什么再解答的先求总数量的应用题现在用什么比例关系解答的谁来说一说,用反比例关系解答这道应用题是怎样想,怎样做的指出;解答例2要先按题意列出关系式,判断成反比例,再找出两种相关联量里相对应的数值,然后根据反比例关系里积一定,也就是两次航行相对应数值的乘积相等,列等式解答。

4.教学改编题。

出示改变的条件和问题,让学生说一说题意。指名一人板演,其余学生在练习本上独立解答。集体订正,让学生说一说怎样想的,根据什么列等式的。

5.小结解题思路。

请同学们看一下黑板上例1、例2的解题过程,想一想,应用比例知识解答应用题,是怎样想怎样做的同学们可以相互讨论一下,然后告诉大家。指名学生说解题思路。指出:应用比例知识解答应用题,先要判断两种相关联的量成什么比例关系,(板书:判断比例关系)再找出相关联量的对应数值,(板书:找出对应数值)再根据正、反比例的意义列出等式解答。(板书:列出等式解答)追问:你认为解题时关键是什么(正确判断成什么比例)怎样来列出等式(正比例比值相等,反比例乘积相等)

三、巩固练习

1.做练一练。

指名两人板演,其余学生做在练习本上。集体订正,让学生说说为什么列出的等式不一样。指出:只有先正确判断成什么比例关系,才能根据正比例或反比例的意义正确列式。

2.做练习十第1题。

让学生用比例知识列出解题的式子,然后口答,老师板书。提问:这两题有什么相同和不同的地方按过去算术解法都要先求什么量用比例知识解答有什么相同的地方(都成正比例关系,都列成比值相等的式子来解答)有什么不同的地方(未知数,表示的数量不同,在等式里位置也不同)说明;在正确判断成比例关系后,要按照比值相等来列等式解答。列等式时还要注意数量之间的对应关系。

3.做练习十第2题。

让学生默读题目。提问:用算术方法解答都要先求什么数量这两题里两种数量成什么关系,为什么要按什么相等来列等式

四、课堂小结

这节课学习了什么内容正、反比例应用题要怎样解答?你还认识了些什么

五、布置作业

课堂作业;完成练习十第1、2题的解答。

家庭作业:练习十第3题。

延伸阅读

最新比例的数学应用题7篇


下面编辑为大家整理了一些“最新比例的数学应用题”。文档处理能够提高我们管理团队和项目的能力,我们也会想看看别人是怎么写的,模仿大师的经典作品是学习写作艺术的重要途径之一。希望此文能够让您思考更深远的问题!

最新比例的数学应用题 篇1

教学内容:P53~54、第4~13题,思考题,正、反比例应用题的练习。

教学目的:进一步掌握正、反比例的意义,能正确应用比例知识解答基本的正、反比例应用题,并沟通不同解法之间的联系,进一步提高学生判断,分析和推理等思维能力。

教学过程:

一、基本训练

P53第4题,口答并说明理由

二、基本题练习

1、做练习十第5题

2提问:按过去的算术解法,第(1)题要先求什么数量?第(2)题呢?

用比例的知识怎样解答呢,请大家自己做一做。

评讲:说一说是怎样想的?

(板书:速度时间=路程(一定)=反比例

=正比例

提问:正、反比例应用题解题过程有什么相同的地方?解题方法有什么不同?为什么?

3、练习小结:(略)

三、综合练习

3、练习十第11题

启发学生用几种方法解答

4、做练习十第13题

(1)提问:这是一道什么应用题?可以怎样列式解答?

(2)把树苗总数看做单位1,成活棵数是94%,你还能用比例知识解答吗?

四、讲解思考题

引导:增加铅以后,铅与锡的比是5:3,有怎样的关系式?

五、课堂小结:

通过本课的练习,你进一步明确了哪些内容?

六、作业:

第8、9、10题

七、课后作业:

第6、7、12题

最新比例的数学应用题 篇2

教学要求:

1.使学生认识正、反比例应用题的特点,理解、掌握用比例知识解答应用题的解题思路和解题方法,学会正确地解答基本的正、反比例应用题。

2.进一步培养学生应用知识进行分析、推理的能力,发展学生思维。

教学重点:认识正、反比例应用题的特点。

教学难点:掌握用比例知识解答应用题的解题思路。

教学过程:

一、复习引新

1.判断下面的量各成什么比例。

(1)工作效率一定,工作总量和工作时间。

(2)路程一定,行驶的速度和时间。

让学生先分别说出数量关系式,再判断。

2.根据条件说出数量关系式,再说出两种相关联的量成什么比例,并列出相应的等式。

(1)一台机床5小时加工40个零件,照这样计算,8小时加工64个。

(2)一列火车行驶360千米。每小时行90千米,要行4小时;每小时行80千米,要行x小时。

指名学生口答,老师板书。

3.引入新课。

从上面可以看出,生产、生活中的一些实际问题,应用比例的知识,也可以根据题意列一个等式。所以,我们以前学过的一些应用题,还可以应用比例的知识来解答。这节课,就学习正、反比例应用题。(板书课题)

二、教学新课

1.教学例1。

(1)出示例1,让学生读题。

提问:以前我们是怎样解答的(板书算式)先求什么,是按怎样的数量关系式来求的这道题里哪个数量是不变的量

(2)说明:这道题还可以用比例知识解答。

提问:题里照这样计算说明什么一定数量之间有怎样的关系式,两种相关联的量成什么比例关系题里两次抽水的总量与时间对应数值各是多少这两次对应数值的什么相等你能根据对应数值的比值相等,列出等式来解答吗请大家自己试一试(启发弄清要设未知数x)。学生练习解题,然后口答,老师板书。追问:按过去的方法是先求什么再解答的先求单一量的应用题现在用什么比例关系解答的

(3)小结:

提问:谁来说一说,用正比例知识解答这道应用题要怎样想怎样做指出:先按题意列关系式判断成正比例,再找出两种相关联量里相对应的数值,然后根据正比例关系里比值一定,也就是两次抽水相对应数值比的比值相等,列等式解答。

2.教学改编题。

出示改变的问题,让学生说一说题意。请同学们按照例1的方法自己在练习本上解答。同时指名一人板演,然后集体订正。指名说一说是怎样想的,列等式的依据是什么。

3.教学例2。

(1)出示例2,学生读题。

提问:以前我们是怎样解答的(板书算式)这样解答先求什么是按怎样的数量关系式来求的(板书:速度时间=路程)这道题里哪个数量是不变的量?

(2)谁能仿照例l的解题过程,用比例知识来解答例27请来试一试。指名板演,其余学生做在练习本上。学生练习后提问是怎样想的。速度和时间的对应关系怎样,检查列式解答过程,结合提问弄清为什么列成积相等的等式解答。

(3)提问:按过去的方法是先求什么再解答的先求总数量的应用题现在用什么比例关系解答的谁来说一说,用反比例关系解答这道应用题是怎样想,怎样做的指出;解答例2要先按题意列出关系式,判断成反比例,再找出两种相关联量里相对应的数值,然后根据反比例关系里积一定,也就是两次航行相对应数值的乘积相等,列等式解答。

4.教学改编题。

出示改变的条件和问题,让学生说一说题意。指名一人板演,其余学生在练习本上独立解答。集体订正,让学生说一说怎样想的,根据什么列等式的。

5.小结解题思路。

请同学们看一下黑板上例1、例2的解题过程,想一想,应用比例知识解答应用题,是怎样想怎样做的同学们可以相互讨论一下,然后告诉大家。指名学生说解题思路。指出:应用比例知识解答应用题,先要判断两种相关联的量成什么比例关系,(板书:判断比例关系)再找出相关联量的对应数值,(板书:找出对应数值)再根据正、反比例的意义列出等式解答。(板书:列出等式解答)追问:你认为解题时关键是什么(正确判断成什么比例)怎样来列出等式(正比例比值相等,反比例乘积相等)

三、巩固练习

1.做练一练。

指名两人板演,其余学生做在练习本上。集体订正,让学生说说为什么列出的等式不一样。指出:只有先正确判断成什么比例关系,才能根据正比例或反比例的意义正确列式。

2.做练习十第1题。

让学生用比例知识列出解题的式子,然后口答,老师板书。提问:这两题有什么相同和不同的地方按过去算术解法都要先求什么量用比例知识解答有什么相同的地方(都成正比例关系,都列成比值相等的式子来解答)有什么不同的地方(未知数,表示的数量不同,在等式里位置也不同)说明;在正确判断成比例关系后,要按照比值相等来列等式解答。列等式时还要注意数量之间的对应关系。

3.做练习十第2题。

让学生默读题目。提问:用算术方法解答都要先求什么数量这两题里两种数量成什么关系,为什么要按什么相等来列等式

四、课堂小结

这节课学习了什么内容正、反比例应用题要怎样解答?你还认识了些什么

五、布置作业

课堂作业;完成练习十第1、2题的解答。

家庭作业:练习十第3题。

最新比例的数学应用题 篇3

比例应用题数学教学设计范文

教学过程:

(一)复习

1.说说正、反比例的意义。

2.下面各题有哪三种量?其中哪一种量是固定不变的?哪两种是变化的?变化的规律是怎样的?这两种量成什么比例?

(1)一辆汽车行驶速度一定,所行的路程和所用时间。

(2)从A地到B地,行驶的速度和时间。

(3)每块砖的面积一定,砖的块数和总面积。

(4)海水的出盐率一定,晒出的盐和海水重量。

3.判断下列各题中已知条件的两个量是否成比例,如果成比例是成什么比例,把已知条件用等式表示出来。

(1)一辆汽车3小时行180千米,照这样速度,5小时可行300千米。

(2)一辆汽车从A地到B地,每小时行60千米,5小时到达。如果要4小时到达,每小时行驶75千米

(二)新课

例1:一辆汽车2小时行驶140千米,照这样的速度,从甲地到乙地共行驶5小时。甲乙两地之间的公路长多少千米?

(1)用以前方法解答。

(2)研究用比例的方法解答

题中涉及哪三种量?哪一种量使一定的行驶的路程和时间成什么系?

能不能利用这个关系式列比例解答?

解比例,同学自已完成,及时纠正。检验。

改变例1中的条件和问题

甲乙两地之间的'公路长350千米,一辆汽车从甲地到乙地共行驶5小时,照这样的速度,2小时行驶多少千米?

教学例2一辆汽车从甲地开往乙地,每小时行70千米,5小时到达,如果要4小时到达,每小时需要行驶多少干米?

1、以前的发法解答。

2、怎样用比例知识解答?

3 讨论结果填书上。

4小结:用比例知识来解答应用题,就是根据正反比例的意义列出方程来解答。

教学要求:

1、使学生能正确判应用题中涉及的`量成什么比例关系。

2、使学生能利用正反比例的意义正确解答应用题。

培养学生的判断分析推理能力。

教学重点:

使学生能正确判断应用题中的数量之间存在什么样的比例关系。并能利用正反比例的关系列出含有未知数的等式正确运用比例知识解答应用题

教学难点:

学生通过分析应用题的已知条件和所求问题,却定那些量成什么比例关系,并利用正反比例的意义列出等式。

最新比例的数学应用题 篇4

例1某车间要加工2220个零件,单独做,甲、乙、丙三人所需工作时间的比是4∶5∶6。现在由三人共同加工,问完成任务时,三人各加工了多少个?

错解由甲、乙、丙三人单独做所需工作时间的比是4∶5∶6,推出甲、乙、丙三人工作效率的比是6∶5∶4,用按比例分配的思路解。

评析上述解答错在把甲、乙、丙三人工作效率的比看成是6∶5∶4。诚然,如果甲、乙二人工作时间的比是4∶5,那么,甲、乙二人工作效率的比就是5∶4,这是正确的。但是,把甲、乙、丙三人工作时间的连比是4∶5∶6转化成甲、乙、丙三人工作效率的连比是6∶5∶4,那就大错了!不错,工作效率的比等于工作时间比的反比。从已知条件看,甲、乙二人工作时间的比是4∶5,所以,甲、乙二人工作效率的比是5∶4;乙、丙二人工作时间的比是5∶6,所以,乙、丙二人工作效率的比是6∶5。这里的“5∶4”表示甲5份,乙4份,“6∶5”表示乙6份,丙5分,两个比都是两重相比,其中同样表示“乙”有几份的数在前后两个比中并不相同,我们怎么能将这两个比直接变成甲、乙、丙三人工作效率的连比呢?显然,上述解答中把甲、乙、丙三人工作效率的连比看成是6∶5∶4,是错误的。

正确的解答应当是:甲、乙、丙三人工作效率的比=

容易看出,因为5∶4=15∶12,6∶5=12∶10,所以,由上述“甲、乙二人工作效率的比是5∶4,乙、丙二人工作效率的比是6∶5”,也可以得到甲、乙、丙三人工作效率的比是是15∶12∶10。

例2有两瓶同样重的盐水,甲瓶盐水盐与水重量的比是1∶8,乙瓶盐水盐与水重量的比是1:5。现将两瓶盐水并在一起,问在混合后的盐水中盐与水重量的比是多少?

错解认为在甲瓶盐水中,盐的重量是“1”,水的重量是“8”,在乙瓶盐水中,盐的重量是“1”,水的重量是“5”,于是,将两瓶盐水并在一起,便得到盐的重量是(1+1=)2,水的重量是(8+5=)13。

(1+1)∶(8+5)=2∶13

答:在混合后的盐水中盐与水重量的比是2∶13。

评析上述解答的主要错误是把两种物质重量的最简比,看成了就是两种物质具体重量的比。甲瓶盐水盐与水重量的比是1∶8,不等于说在这瓶盐水中盐的重量是1千克,水的重量是8千克,乙瓶的情况也是一样。从已知条件可以看出,在甲瓶盐水中,盐有1份,水有8份,盐和水一共有(1+8=)9(份),在乙瓶盐水中,盐有1份,水有5份,盐和水一共有(1+5=)6(份)。因为两瓶盐水是“同样重”,但甲瓶有9份,乙瓶只有6份,所以,可见两瓶盐水中每“1份”的重量有多少是不相同的。上述解答简单地将两瓶盐水中每份重量不同的盐和水的份数分别相加,然后再将两个“和”组成一个比,便造成了解答的错误。

正确的解答是:1∶8=2∶16,2+16=18;

1∶5=3:15,3+15=10。(2+3)∶(16+15)=5:31

答:在混合后的盐水中盐与水重量的比是5∶31。

最新比例的数学应用题 篇5

(1)水果店一天运进苹果、香蕉、梨共390千克,苹果的重量是梨的1.5倍,香蕉的重量是梨的3/4,三种水果各运进多少千克?

(2)一缸水,用去1/2和5桶,还剩30%,这缸水有多少桶?

(3)有一快棱长20厘米的正方体木料,刨成一个底面直径的圆柱体,刨去木料的体积是多少?

(4)一根钢管长10米,第一次截去它的7/10,第二次又截去余下的1/3,还剩多少米?

(5)两个小组装配收音机,甲组每天装配50台,第一天完成了总任务的10%,这时乙组才开始装配,每天装配40台,完成这批任务时,甲组做了多少天?

(6)修筑一条公路,完成了全长的2/3后,离中点16。5千米,这条公路全长多少千米?

(7)师徒两人合做一批零件,徒弟做了总数的2/7,比师傅少做21个,这批零件有多少个?

(8)两队修一条公路,甲队每天修全长的1/5,乙队独做7.5天修好。如果两队合修2天后,其余由乙队独修,还要几天完成?

(9)仓库里有一批化肥,第一次取出总数的2/5,第二次取出总数的1/3少12袋,这时仓库里还剩24袋,两次共取出多少袋?

(10)前轮在720米的距离里比后轮多转40周,如果后轮的周长是2米,求前轮的周长。

最新比例的数学应用题 篇6

1、为创建海华公司,张、王、李三人分别投资100万元、120万元和80万元。在他们三人的共同努力下,到年末,公司共盈利60万元,你认为该如何合理分配这笔钱,每人分别得多少?

2、甲乙两地相距360千米,一辆汽车从甲地到乙地计划7小时行完全程,汽车的速度如下表,问能否在规定的时间内行完全程?(计算后简要说明)

3、在比例尺是的地图上,量得甲乙两地的距离为4.5厘米,如果一辆客车和货车同时从甲乙两地相对开出,经过3小时相遇。已知客车每小时行65千米,那么这辆货车每小时行多少千米?

4、在比例尺是1:3000000的地图上,量得A、B两城之间的距离是2.4厘米。在A、B两城之间有一中途停靠站C,A、B两城到C站的距离比是7:5。一辆汽车从B城到C站共用了0.6小时,求这辆汽车的速度。

5、甲乙两人分别从相距255千米的两地同时出发相向而行,已知甲乙速度比为10:7,两人相遇时各行了多少千米?

6、小淘气看一本科技书,第一天看了全书的1,第二天看了42页,这时看了的页数与剩6下的页数比是2:5,这本科技书一共有多少页?

7、把长35厘米的圆柱体按3∶2截成了一长一短两个小圆柱体后,表面积总和增加了30平方厘米。求截成的较长一个圆柱的体积。

最新比例的数学应用题 篇7

教学内容:教材第115页正、反比例的意义和正、反比例应用题、练一练,练习二十二第1、2题。

教学要求:

1、使学生更清楚地认识正比例和反比例关系的特征,能正确判断成正比例关系或反比例关系的量。

2、使学生进一步掌握正比例和反比例应用题的数量关系、解题思路,能正确地解答成正、反比例关系的应用题,进一步培养学生分析、推理和判断等思维能力。

教学过程:

一、揭示课题

这节课,复习正、反比例关系和正、反比例应用题。通过复习,要进一步认识正、反比例的意义,掌握正、反比例应用题的数量关系、解题思路和解题方法,能更正确地判断成正、反比例关系的量,正确地解答正、反比例应用题。

二、复习正、反比例的意义。

1、复习正、反比例的意义。

提问:如果用x和y表示成比例关系的两种相关联的量,那么,什么情况下成正比例关系,什么情况下成反比例关系?

想一想,成正比例关系和成反比例关系的两种量有什么相同点和不同点?

指出:正比例关系和反比例关系的相同点是:都有相关联的两种量,一种量随着另一种量的变化而变化。不同点是:成正比例关系的两种量中相对应数值的比值一定,成反比例关系的两种量中相对应数值的积一定。

2、判断正、反比例关系。

(1)做练一练第1题。

指名学生口答。

提问:判断是不是成比例和成什么比例的根据是什么?

(2)做练习二十二第1题。

指名学生口答。

3、判断x和y这两种量成什么关系,为什么?

指出:我们根据正、反比例关系的特点,可以判断两种相关联的量成什么比例。如果一道题里两种量成正比例或反比例关系,我们就可以应用比例的知识,根据比值相等或者积相等的数量关系来解答。

三、复习正、反比例应用题。

1、做练一练第2题第1题。

让学生读题,判断两种量成什么比例。

提问:这道题成正比例关系,要根据什么相等来列式解答?

指名一人板演,其余学生做在练习本上。

集体订正,突出列式的等量关系是比值一定。

做练一练第2题第(2)题。

指名一人板演,其余学生做在练习本上。

集体订正。

提问:这道题是怎样想的?成反比例关系的应用题,要根据什么来列式解答?

3、启发学生思考:

你认为正比例应用题实际上是我们过去学过的哪一类应用题?反比例应用题是哪一类应用题?

怎样解答正、反比例应用题?

指出:用比例知识解答应用题,要先判断两种相关联的量成什么比例。如果成正比例,根据比值相等列等式解答;如果成反比例,根据积相等列等式解答。

四、课堂作业

练习二十二第2题

最新比例的数学应用题9篇


“最新比例的数学应用题”为我们带来了很多启示,请留意本文中的引用和参考文献。相信大家不可避免都会接触对文档的撰写吧,有时候看一些范文,远比自己苦想有用得多,写作的质量可以通过范文来解决。

最新比例的数学应用题(篇1)

1、在一幅地图上,5厘米的长度表示地面上150千米的距离,求这幅地图的比例尺。

2、在比例尺是1∶6000000的地图上,量得甲地到乙地的距离是25厘米,求两地间的实际距离。

18厘米。若一架飞机以每小时750千米的速度从北京飞往南京,大约需要多少小时?

4、混凝土的配料是水泥∶黄沙∶石子=1∶2∶3。现在要浇制混凝土楼板40块,每块重0.3吨,需要水泥、黄沙、石子各多少吨做原料?

5、一批零件,每天做56个,28天完成,如果提前12天完成,每天应做多少个?

6、某工人要做504个零件,他5天做了120个,照这样的速度,余下的还要做多少天?

7、一间大厅,用边长4分米的方砖铺地,需用324块;若改铺边长3分米的方砖,需要多用几块?

8、一根皮带带动两个轮子,大轮直径30厘米,小轮直径10厘米;小轮每分钟转300转,大轮每分钟转几转?

9、一件工程,如果34人工作需20天完成,若要提前3天完工,现在需要增加几名工人?

10、一本文艺书,每天读6页,20天可以读完,要提前8天看完,每天要比原来多看几页?

11、羊毛衫厂共有工人538人,分三个车间,第一车间比第三车间少12人,已知第二车间与第三车间的人数比是3∶4。三个车间各有多少人?照这样计算,还要多少小时才能耕完这块地?

13、学校把购进的图书的60%按2∶3∶4分配给四、五、六三个年级。已知六年级分得56本,学校共购进图书多少本?

14、小明居住的院内有4家,上月付水费9.8元,其中张叔叔家有2人,王奶奶家有4人,李阿姨家有3人,小明家有5人,若按人口计算,他们四家各应付水费多少元?

15、某生产队由15个队员收割一块双季稻,8小时能割完,但割了3小时以后,由于天气突然发生变化,增加了10个社员进行抢收,问还需多少小时才能割完这块双季稻?

最新比例的数学应用题(篇2)

一、请用比例的方法试解下列应用题:

1、配制一种农药,药粉和水的比是1:500.

(1) 现有水6000千克,配制这种农药需要药粉多少千克?

(2) 现有药粉3.6千克,配制这种农药需要水多少千克?

2、学校买来161米塑料绳子,剪下21米,做12根跳绳,照这样计算,剩下的塑料绳还可以剪几根跳绳?

3、一个房间,用面积为9平方分米的方砖铺地需240块,如果改用边长4分米的砖铺地,需多少块?

4、服装厂原来生产一套成人西服用布2.5米,改进裁剪方法后,每套节约用布20%,原来生产240套西服的布,现在可生产多少套?

二、应用题:用合适的'方法进行求解

王、李三人分别投资120万元和80万元。在他们三人的共同努力下,到年末,公司共盈利60万元,你认为该如何合理分配这笔钱,每人分别得多少?

3、在比例尺是

的地图上,量得甲乙两地的距离为4.5厘米,如果一辆客车和货车同时从甲乙两地相对开出,经过3小时相遇。已知客车每小时行65千米,那么这辆货车每小时行多少千米?

B两城之间的距离是B两城之间有一中途停靠站C,A、B两城到C站的距离比是7:5。一辆汽车从B城到C站共用了0.6小时,求这辆汽车的速度。

5、甲乙两人分别从相距255千米的两地同时出发相向而行,已知甲乙速度比为10:7,两人相遇时各行了多少千米?

6、小淘气看一本科技书,第一天看了全书的 ,第二天看了42页,这时看了的页数与剩下的页数比是2:5,这本科技书一共有多少页?

7、把长35厘米的圆柱体按3∶2截成了一长一短两个小圆柱体后,表面积总和增加了30平方厘米。求截成的较长一个圆柱的体积。

乙、丙三种配套机件共1280只,其中甲乙两种机件只数的比是3∶2,丙种机件比甲种多80只,丙种机件生产了多少只?

乙、丙三人完成,甲完成了总任务的丙按3∶4来做,丙共做了200个,问这批零件共有多少个?

客货两车的速度比是3:2,货车行完甲乙两地全程要 小时。如果客货两车同时从甲乙两地出发,几小时可以相遇?

三、生活题:

吴工程师和李技术员从公司出发,合乘一辆出租车,吴工程师去实验室,李技术员去工地。(如下图)两人商定出租车费由两人合理分摊。

公司        4千米       实验室                                     工地

12千米

已知出租车的车费牌价为:8元;3千米以上每千米1.8元。

最新比例的数学应用题(篇3)

1、用同样的方砖铺地,铺20平方米要320块,如果铺42平方米,要用多少块方砖?

2、一间教室,用面积是0.16平方米的方砖铺地,需要275块,如果用面积是0.25平方米的方砖铺地,需要方砖多少块?

3、建筑工地原来用4辆汽车,每天运土60立方米,如果用6辆同样的汽车来运,每天可以运土多少立方米?

4、我国发射的人造地球卫星绕地球运行3周约3.6小时,运行20周约需多少小时?

5、一种铁丝,7.5米长重3千克,现在有19.5米长的这种铁丝,重多少千克?

6、汽车在高速公路上3小时行240千米,照这样计算,5小时行多少千米?

7、修一条公路,4天修了200米,照这样计算,又修了6天,又修了多少米?

8、小明读一本书,每天读12页,8天可以读完。如果每天多读4页,几天可以读完?

9、今春分配给学校一些植树任务,每天栽200棵6天可以完成任务,现在需要4天完成任务,实际每天比原计划多栽多少棵?

10、农场用3辆拖拉机耕地,每天共耕225公顷,照这样速度,用5辆同样拖拉机,每天共耕地多少公顷?

11、一艘轮船,从甲地从开往乙地,每小时航行20千米,12小时到达,从乙地返回甲地时,每小时多航行4千米,几小时可以到达?

12、100千克黄豆可以榨油13千克,照这样计算,要榨豆油6.5吨,需黄豆多少吨?

13、学校计划买54张桌子,每张30元,如果这笔钱买椅子,可以买90张,每张椅子多少钱?

14、一对互相咬合的齿轮,主动轮有20个齿,每分钟转60转,如果要使从动轮每分钟转40转,从动轮的齿数应是多少?

15、把3米长的竹竿直立在地面上,测得影长1.2米,同时测得一根旗杆的影长为4.8米,求旗杆的高是多少米?

16、一个机器零件长5毫米,画在图纸上是4厘米,求这幅图纸的比例尺。(5分)

17、地图上的26厘米,在比例尺为1∶1300000的地图上约是多少千米?(5分)

18、李师傅计划生产450个零件,工作8小时后还差330个零件没有完成,照这样速度,共要几小时完成任务?

19、用一批纸装订同样的练习本,如果每本30页,可以装订80本。如果每本页数减少20%,这批纸可以装订多少本?

20、某印刷厂计划四月份印刷课本20000本,结果8天就印刷了5600本,照这样速度,四月份能印多少本?

21、食堂有一批煤,计划每天烧105千克可以烧30天。改进烧煤技术后,每天烧煤90千克,这批煤可以多烧多少天?

22、跃进机床厂原计划30天制造机床200台,结果做20天就只差40台没有做,照这样计算,可以提前几天完成任务?

23、农场挖一条水渠,头5天挖了180米,照这样速度,又用了16天挖完这条水渠。这条水渠全长多少米?

24、在比例尺是1:6000000的地图上,量得两地距离是5厘米,甲乙两车同时从两地相向而行,3小时后两车相遇。已知甲乙两车的速度比是2:3,求甲乙两车的速度各是多少千米?

25、 一幅地图,图上20厘米表示实际距离10千米,求这幅地图的比例尺?

25、一列火车从甲地开往乙地,5小时行了350千米,照这样计算,共要行9小时。甲乙两地相距多少千米?

26、 英华小学有一块长120米、宽80米的长方形操场,画在比例尺为1 :4000的平面图上,长和宽各应画多少厘米?(6分)

27、 修一条路,如果每天修120米,8天可以修完;如果每天修150米,几天可以修完?(用比例方法解)

28、 同学们做操,每行站20人,正好站18行。如果每行站24人,可以站多少行?(用比例方法解)

29、 飞机每小时飞行480千米,汽车每小时行60千米。飞机行4 小时的路程,汽车要行多少小时?(用比例方法解)

30、 修一条公路,每天修0.5千米,36天完成。如果每天修0.6千米,多少天可修完?(用比例方法解)

最新比例的数学应用题(篇4)

教学目的

1.通过复习,使学生能够正确判断出应用题中所涉及的相关联的量成什么比例关系.

2.通过复习,能够使学生利用正反比例的意义正确、熟练的解答应用题.

3.通过复习,培养学生的分析能力、综合能力以及判断推理能力.

教学重点

通过复习,使学生能够利用正反比例的意义正确、熟练的解答应用题.

教学难点

通过复习,使学生能够利用正反比例的意义正确、熟练的解答应用题.

教学过程

一、复习准备.

下面每题中的两种量成什么比例关系?

(1)速度一定,路程和时间.

(2)总价一定,每件物品的价格和所买的数量.

(3)小朋友的年龄与身高.

(4)正方体每一个面的面积和正方体的表面积.

(5)被减数一定,减数和差.

谈话引入:我们今天运用正反比例的知识来解决实际问题.

(板书:用比例知识解应用题)

二、探讨新知.

(一)教学例5(用比例解答下题)

修一条公路,总长12千米,开工3天修了1.5千米.照这样计算,修完这条路还要多少天?

1.学生读题,独立解答.

2.学生反馈:

3.分析:

(1)为什么需要用正比例解答?

(2)12和要求的天数之间有什么关系?

4.小结:我们在做题时,根据注意题目中的数量关系,不仅需要判定运用什么比例方法,而且还要注意找准题目中的对应关系.

(二)反馈.

1.某车队运送一批救灾物品,原计划每小时行60千米,6.5小时到达灾区,实际每小时行了78千米.照这样计算,行完全程需要多少小时?

2.大齿轮与小齿轮的齿数比为4∶3.大齿轮有36个齿,小齿轮有多少个齿?

三、巩固反馈.

1.一张大纸,如果裁成长36厘米,宽26厘米的小纸张,可以裁成28张;如果裁成长18厘米,宽13厘米的小纸张,可以裁成多少张?

2.某车间有男工25人,女工20人.如果男工增加15人,要想使男工和女工人数的比不发生变化,女工应该增加多少人?

3.一项工程,10人去做24天可以完成;如果每人的工作效率不变,现在需要提前4天完成,需要多少人?

4.两个底面半径相等的圆柱体,第一个圆柱的高是第二个圆柱高的.第二个圆柱的体积是60立方米,第一个圆柱体的体积是多少立方米?

四、课堂总结.

通过这堂课的学习,你有什么收获?

最新比例的数学应用题(篇5)

教学要求:

1.使学生认识正、反比例应用题的特点,理解、掌握用比例知识解答应用题的解题思路和解题方法,学会正确地解答基本的正、反比例应用题。

2.进一步培养学生应用知识进行分析、推理的能力,发展学生思维。

教学重点:认识正、反比例应用题的特点。

教学难点:掌握用比例知识解答应用题的解题思路。

教学过程:

一、复习引新

1.判断下面的量各成什么比例。

(1)工作效率一定,工作总量和工作时间。

(2)路程一定,行驶的速度和时间。

让学生先分别说出数量关系式,再判断。

2.根据条件说出数量关系式,再说出两种相关联的量成什么比例,并列出相应的等式。

(1)一台机床5小时加工40个零件,照这样计算,8小时加工64个。

(2)一列火车行驶360千米。每小时行90千米,要行4小时;每小时行80千米,要行x小时。

指名学生口答,老师板书。

3.引入新课。

从上面可以看出,生产、生活中的一些实际问题,应用比例的知识,也可以根据题意列一个等式。所以,我们以前学过的一些应用题,还可以应用比例的知识来解答。这节课,就学习正、反比例应用题。(板书课题)

二、教学新课

1.教学例1。

(1)出示例1,让学生读题。

提问:以前我们是怎样解答的(板书算式)先求什么,是按怎样的数量关系式来求的这道题里哪个数量是不变的量

(2)说明:这道题还可以用比例知识解答。

提问:题里照这样计算说明什么一定数量之间有怎样的关系式,两种相关联的量成什么比例关系题里两次抽水的总量与时间对应数值各是多少这两次对应数值的什么相等你能根据对应数值的比值相等,列出等式来解答吗请大家自己试一试(启发弄清要设未知数x)。学生练习解题,然后口答,老师板书。追问:按过去的方法是先求什么再解答的先求单一量的应用题现在用什么比例关系解答的

(3)小结:

提问:谁来说一说,用正比例知识解答这道应用题要怎样想怎样做指出:先按题意列关系式判断成正比例,再找出两种相关联量里相对应的数值,然后根据正比例关系里比值一定,也就是两次抽水相对应数值比的比值相等,列等式解答。

2.教学改编题。

出示改变的问题,让学生说一说题意。请同学们按照例1的方法自己在练习本上解答。同时指名一人板演,然后集体订正。指名说一说是怎样想的,列等式的依据是什么。

3.教学例2。

(1)出示例2,学生读题。

提问:以前我们是怎样解答的(板书算式)这样解答先求什么是按怎样的数量关系式来求的(板书:速度时间=路程)这道题里哪个数量是不变的量?

(2)谁能仿照例l的解题过程,用比例知识来解答例27请来试一试。指名板演,其余学生做在练习本上。学生练习后提问是怎样想的。速度和时间的对应关系怎样,检查列式解答过程,结合提问弄清为什么列成积相等的等式解答。

(3)提问:按过去的方法是先求什么再解答的先求总数量的应用题现在用什么比例关系解答的谁来说一说,用反比例关系解答这道应用题是怎样想,怎样做的指出;解答例2要先按题意列出关系式,判断成反比例,再找出两种相关联量里相对应的数值,然后根据反比例关系里积一定,也就是两次航行相对应数值的乘积相等,列等式解答。

4.教学改编题。

出示改变的条件和问题,让学生说一说题意。指名一人板演,其余学生在练习本上独立解答。集体订正,让学生说一说怎样想的,根据什么列等式的。

5.小结解题思路。

请同学们看一下黑板上例1、例2的解题过程,想一想,应用比例知识解答应用题,是怎样想怎样做的同学们可以相互讨论一下,然后告诉大家。指名学生说解题思路。指出:应用比例知识解答应用题,先要判断两种相关联的量成什么比例关系,(板书:判断比例关系)再找出相关联量的对应数值,(板书:找出对应数值)再根据正、反比例的意义列出等式解答。(板书:列出等式解答)追问:你认为解题时关键是什么(正确判断成什么比例)怎样来列出等式(正比例比值相等,反比例乘积相等)

三、巩固练习

1.做练一练。

指名两人板演,其余学生做在练习本上。集体订正,让学生说说为什么列出的等式不一样。指出:只有先正确判断成什么比例关系,才能根据正比例或反比例的意义正确列式。

2.做练习十第1题。

让学生用比例知识列出解题的式子,然后口答,老师板书。提问:这两题有什么相同和不同的地方按过去算术解法都要先求什么量用比例知识解答有什么相同的地方(都成正比例关系,都列成比值相等的式子来解答)有什么不同的地方(未知数,表示的数量不同,在等式里位置也不同)说明;在正确判断成比例关系后,要按照比值相等来列等式解答。列等式时还要注意数量之间的对应关系。

3.做练习十第2题。

让学生默读题目。提问:用算术方法解答都要先求什么数量这两题里两种数量成什么关系,为什么要按什么相等来列等式

四、课堂小结

这节课学习了什么内容正、反比例应用题要怎样解答?你还认识了些什么

五、布置作业

课堂作业;完成练习十第1、2题的解答。

家庭作业:练习十第3题。

最新比例的数学应用题(篇6)

例1某车间要加工2220个零件,单独做,甲、乙、丙三人所需工作时间的比是4∶5∶6。现在由三人共同加工,问完成任务时,三人各加工了多少个?

错解由甲、乙、丙三人单独做所需工作时间的比是4∶5∶6,推出甲、乙、丙三人工作效率的比是6∶5∶4,用按比例分配的思路解。

评析上述解答错在把甲、乙、丙三人工作效率的比看成是6∶5∶4。诚然,如果甲、乙二人工作时间的比是4∶5,那么,甲、乙二人工作效率的比就是5∶4,这是正确的。但是,把甲、乙、丙三人工作时间的连比是4∶5∶6转化成甲、乙、丙三人工作效率的连比是6∶5∶4,那就大错了!不错,工作效率的比等于工作时间比的反比。从已知条件看,甲、乙二人工作时间的比是4∶5,所以,甲、乙二人工作效率的比是5∶4;乙、丙二人工作时间的比是5∶6,所以,乙、丙二人工作效率的比是6∶5。这里的“5∶4”表示甲5份,乙4份,“6∶5”表示乙6份,丙5分,两个比都是两重相比,其中同样表示“乙”有几份的数在前后两个比中并不相同,我们怎么能将这两个比直接变成甲、乙、丙三人工作效率的连比呢?显然,上述解答中把甲、乙、丙三人工作效率的连比看成是6∶5∶4,是错误的。

正确的解答应当是:甲、乙、丙三人工作效率的比=

容易看出,因为5∶4=15∶12,6∶5=12∶10,所以,由上述“甲、乙二人工作效率的比是5∶4,乙、丙二人工作效率的比是6∶5”,也可以得到甲、乙、丙三人工作效率的比是是15∶12∶10。

例2有两瓶同样重的盐水,甲瓶盐水盐与水重量的比是1∶8,乙瓶盐水盐与水重量的比是1:5。现将两瓶盐水并在一起,问在混合后的盐水中盐与水重量的比是多少?

错解认为在甲瓶盐水中,盐的重量是“1”,水的重量是“8”,在乙瓶盐水中,盐的重量是“1”,水的重量是“5”,于是,将两瓶盐水并在一起,便得到盐的重量是(1+1=)2,水的重量是(8+5=)13。

(1+1)∶(8+5)=2∶13

答:在混合后的盐水中盐与水重量的比是2∶13。

评析上述解答的主要错误是把两种物质重量的最简比,看成了就是两种物质具体重量的比。甲瓶盐水盐与水重量的比是1∶8,不等于说在这瓶盐水中盐的重量是1千克,水的重量是8千克,乙瓶的情况也是一样。从已知条件可以看出,在甲瓶盐水中,盐有1份,水有8份,盐和水一共有(1+8=)9(份),在乙瓶盐水中,盐有1份,水有5份,盐和水一共有(1+5=)6(份)。因为两瓶盐水是“同样重”,但甲瓶有9份,乙瓶只有6份,所以,可见两瓶盐水中每“1份”的重量有多少是不相同的。上述解答简单地将两瓶盐水中每份重量不同的盐和水的份数分别相加,然后再将两个“和”组成一个比,便造成了解答的错误。

正确的解答是:1∶8=2∶16,2+16=18;

1∶5=3:15,3+15=10。(2+3)∶(16+15)=5:31

答:在混合后的盐水中盐与水重量的比是5∶31。

最新比例的数学应用题(篇7)

教材分析:

正比例应用题这部分内容是在教学过比例的意义和性质,成正、反比例的量的基础上进行教学的,这是比和比例知识的综合运用。教材首先说明应用正、反比例的知识可以解决一些实际问题。例1教学应用正比例的意义来解的基本应用题。为了加强知识之间的联系,先让学生用以前学过的方法解答,然后教学用比例的知识解答。通过方框中的说明突出了怎样进行思考的过程,特别强调了新科技要判断题目中两种相关联的量成什么比例联系,以及列出比例式所需的相等联系,即行驶的路程和时间成正比例联系,所以两次行的路程和时间的比是相等的然后再设未知数,列出等式(方程)解答,并在解答的基础上引导学生想一想,如果改变例1题目里的条件和问题该怎样解答。

教学对象分析:

成正比例的量,在生活实际中应用很广,学生在前两年的学习中,已接触过这种情况的问题,如归一应用题,只不过那时是就题论题,没有上升到一般规律。这里主要使学生学习用比例的知识来解答,在原有认识的基础上,再让学生用其他方法解答同一题目,概括出一般规律。通过解答使学生进一步熟练地判断成正比例的量,从而加深对正比例意义的理解。有利于沟通知识间的联系,也为中学的数学、物理、化学等学科中应用比例知识解决一些问题做较好的准备。同时,由于解答时是根据正比例意义来列等式,又可以巩固和加深对所学的简易方程的认识。所以,在教学上要十分重视从旧知识引申出新知识,在这过程中,蕴涵了抽象概括的方法,运用这个概括对新的实际问题进行判断,这是数学学习所特有的能力。

正比例应用题教学设计

三元坊小学梁智丹

教学内容:人教版23页至24页例1以及相应的做一做。

教学目标:

1、掌握用正比例的方法解答相关应用题;

2、通过解答应用题使学生熟练地判断两种相关联的量是否成正比例,

从而加深对正比例意义的理解;

3、培养学生分析问题、解决问题的能力;

4发展学生综合运用知识解决简单实际问题的能力。

教学重点:掌握用正比例的方法解答应用题

教学难点:能正确判断两种相关联的量成什么比例,正确列出比例式。

教学过程:

一、谈话导入:

1、在上新课之前,先考考大家对广州的认识。你知道广州最高的建筑物是什么?它位于何处?

2、对于这座广州最高的建筑物,你还想了解些什么?怎样测量它大概的高度呢?

刚才同学们想出了很多的方法去测量中信广场的大概高度。今天我们学习一种新的方法正比例应用题,学完后,我们试着用这种方法去计算中信广场的大概高度。看谁学得最棒。

二、新课教学:

先来研究这样一个问题。

1、出示例1

一辆汽车2小时行驶140千米,照这样的速度,从甲地到乙地共行驶5小时。甲乙两地之间的公路长多少千米?

2、分析解答应用题

(1)请一位同学读一读题目

(2)这道题要求什么?已知什么条件?

(3)能不能用以前学过的方法解答?

(4)让学生自己解答,边订正边板书:

14025

=705

=350(千米)

答:________________。

3、激励引新

这两种方法都合理,还可以有什么方法解答呢?

学生互议,师引导,我们已经学习了比例的知识,能不能用比例解答呢?

三、探讨新知

1、提出问题

师:请同学们结合课本上的例题,讨论以下问题。

(1)题目中相关联的两种量是________和________。

(2)________必定,_________和_________成_______比例联系。

(3)______行驶的_____和_____的________相等。

2、学生自学例题后小组讨论。

3、组间交流:小组代表把讨论结果在班内交流

4、学生尝试解答后评价(指名学生板演)

5、怎样检验?把检验过程写出来。

6、概括总结

(1)

用比例解答应用题与用算术方法解答应用题教师这道题的解法,如果题目中没有要求的,我们采取任何一种方法都可以,但如果题目要求用比例解的,就必定要用比例的方法解。

(2)明确解题步骤。(板)

用比例方法解答应用题,具体步骤是怎样的呢?请根据我们所做的例题归纳解题步骤。

1.分析判断

2.找出列比例式所需的相等联系

3.设未知数列等式

4.求解

5.检验写答语

[NextPage]

四、练习提高

1、基本练习

(1)例题改编

①如果把这道题的第三个和问题改成:已知公路长350千米,需要行驶多少小时?该怎样解答?

②让学生解答改编后的应用题,集体订正。

③小结:比较一下改编后的题和例1有什么联系和区别?

例1的条件和问题以后,题中成正比例的联系仍没变,解答的方法出没有改变,只是要设需要行驶的小时数为x,列出的等式是:

140/2=350/x

(2)24页做一做:让学生直接用比例知识解答。做完后,请几个同学说一说:你为什么这样列式?

2、变式练习

3、理论运用

(1)汇报数据:刚才我们上课时提到怎教材分析:

正比例应用题这部分内容是在教学过比例的意义和性质,成正、反比例的量的基础上进行教学的,这是比和比例知识的综合运用。教材首先说明应用正、反比例的知识可以解决一些实际问题。例1教学应用正比例的意义来解的基本应用题。为了加强知识之间的联系,先让学生用以前学过的方法解答,然后教学用比例的知识解答。通过方框中的说明突出了怎样进行思考的过程,特别强调了新科技要判断题目中两种相关联的量成什么比例联系,以及列出比例式所需的相等联系,即行驶的路程和时间成正比例联系,所以两次行的路程和时间的比是相等的然后再设未知数,列出等式(方程)解答,并在解答的基础上引导学生想一想,如果改变例1题目里的条件和问题该怎样解答。

教学对象分析:

成正比例的量,在生活实际中应用很广,学生在前两年的学习中,已接触过这种情况的问题,如归一应用题,只不过那时是就题论题,没有上升到一般规律。这里主要使学生学习用比例的知识来解答,在原有认识的基础上,再让学生用其他方法解答同一题目,概括出一般规律。通过解答使学生进一步熟练地判断成正比例的量,从而加深对正比例意义的理解。有利于沟通知识间的联系,也为中学的数学、物理、化学等学科中应用比例知识解决一些问题做较好的准备。同时,由于解答时是根据正比例意义来列等式,又可以巩固和加深对所学的简易方程的认识。所以,在教学上要十分重视从旧知识引申出新知识,在这过程中,蕴涵了抽象概括的方法,运用这个概括对新的实际问题进行判断,这是数学学习所特有的能力。

最新比例的数学应用题(篇8)

教学内容:教科书第35页的第45题,练习九的第46题。

教学目的:使学生进一步掌捏用比例解答应用题的方法,提高解答应用题的能力。

教具准备:小黑板。

教学过程:

一、复习用比例解答应用题

教师:我们学习了比例的知识,有些应用题就可以用比例的知识来解答。现在我们就来复习一下。

1,用小黑板出示第35页第4题:

我国发射的科学实验人造地球卫星,在空中绕地球运行6周需行10.6小时,运行14周要用多少小时

教师解释:运行一周就是绕地球一圈,人造卫星的速度是一定的。

提问:

这道题有几个相关联的量它们成什么关系为什么(有两个相关联的量,因图为=速度,而速度是一定的,所以转的周数同时间成正比例关系。)

指名说说这道题用比例的知识怎样解答。当学生说出后,教师板书出解答过程:

解:设运行14周要用X小时。

6:10.6=14:X

6x=10.614

X=

x24、7

答:运行14周要用24.7小时。

2.用小黑板出示第35页第5题:

一个农业专业组乎整土地,原来打算每天平整0.4公顷,15天可以完成任务。结果12天完成了任务,平均每天平整多少公顷

指名学生读题,并说出这道题的两个相关联的量成什么比例,当学生说出每天平整的公顷数与时间成反比例后,让学生完成这道题。教师板书出解答过程。

3.总结。

教师:像上面这样的题在解答时,先要判断两个相关联的量成什么比例,然后列出含有未知数x的等式,再进行解答。

二、课堂练习

完成练习九的第46题。

1。第4题,先说明一下,农药是药液和水合起来的重量,再提示:第(1)小题。要求配制这种农药750.5千克,需要药液与水多少千克,要先算出农药和药液的比、农药和水的比。

2.第5题,让学生说一说根据什么来判断方砖的面积与方砖的块数成什么比例。

3.第6题,让学生独立完成,集体订正时,说说解答思路。

最新比例的数学应用题(篇9)

1、为创建海华公司,张、王、李三人分别投资100万元、120万元和80万元。在他们三人的共同努力下,到年末,公司共盈利60万元,你认为该如何合理分配这笔钱,每人分别得多少?

2、甲乙两地相距360千米,一辆汽车从甲地到乙地计划7小时行完全程,汽车的速度如下表,问能否在规定的时间内行完全程?(计算后简要说明)

3、在比例尺是的地图上,量得甲乙两地的距离为4.5厘米,如果一辆客车和货车同时从甲乙两地相对开出,经过3小时相遇。已知客车每小时行65千米,那么这辆货车每小时行多少千米?

4、在比例尺是1:3000000的地图上,量得A、B两城之间的距离是2.4厘米。在A、B两城之间有一中途停靠站C,A、B两城到C站的距离比是7:5。一辆汽车从B城到C站共用了0.6小时,求这辆汽车的速度。

5、甲乙两人分别从相距255千米的两地同时出发相向而行,已知甲乙速度比为10:7,两人相遇时各行了多少千米?

6、小淘气看一本科技书,第一天看了全书的1,第二天看了42页,这时看了的页数与剩6下的页数比是2:5,这本科技书一共有多少页?

7、把长35厘米的圆柱体按3∶2截成了一长一短两个小圆柱体后,表面积总和增加了30平方厘米。求截成的较长一个圆柱的体积。

最新比例的数学应用题11篇


文档写作是使思考更加精确和细致的有效工具,范文的重要性日益受到专家学者的广泛关注和研究。好的范文结尾一定是亮点?以下是57梯子网小编为您整理的与“最新比例的数学应用题”相关的完整信息,请将本网页保存在您的收藏夹中以备不时之需!

最新比例的数学应用题 篇1

比例应用题数学教学设计范文

教学过程:

(一)复习

1.说说正、反比例的意义。

2.下面各题有哪三种量?其中哪一种量是固定不变的?哪两种是变化的?变化的规律是怎样的?这两种量成什么比例?

(1)一辆汽车行驶速度一定,所行的路程和所用时间。

(2)从A地到B地,行驶的速度和时间。

(3)每块砖的面积一定,砖的块数和总面积。

(4)海水的出盐率一定,晒出的盐和海水重量。

3.判断下列各题中已知条件的两个量是否成比例,如果成比例是成什么比例,把已知条件用等式表示出来。

(1)一辆汽车3小时行180千米,照这样速度,5小时可行300千米。

(2)一辆汽车从A地到B地,每小时行60千米,5小时到达。如果要4小时到达,每小时行驶75千米

(二)新课

例1:一辆汽车2小时行驶140千米,照这样的速度,从甲地到乙地共行驶5小时。甲乙两地之间的公路长多少千米?

(1)用以前方法解答。

(2)研究用比例的方法解答

题中涉及哪三种量?哪一种量使一定的行驶的路程和时间成什么系?

能不能利用这个关系式列比例解答?

解比例,同学自已完成,及时纠正。检验。

改变例1中的条件和问题

甲乙两地之间的'公路长350千米,一辆汽车从甲地到乙地共行驶5小时,照这样的速度,2小时行驶多少千米?

教学例2一辆汽车从甲地开往乙地,每小时行70千米,5小时到达,如果要4小时到达,每小时需要行驶多少干米?

1、以前的发法解答。

2、怎样用比例知识解答?

3 讨论结果填书上。

4小结:用比例知识来解答应用题,就是根据正反比例的意义列出方程来解答。

教学要求:

1、使学生能正确判应用题中涉及的`量成什么比例关系。

2、使学生能利用正反比例的意义正确解答应用题。

培养学生的判断分析推理能力。

教学重点:

使学生能正确判断应用题中的数量之间存在什么样的比例关系。并能利用正反比例的关系列出含有未知数的等式正确运用比例知识解答应用题

教学难点:

学生通过分析应用题的已知条件和所求问题,却定那些量成什么比例关系,并利用正反比例的意义列出等式。

最新比例的数学应用题 篇2

一、判断。

1.某班男生有8人,女生有10人,男生与女生人数之比是0.8。( )

2.甲、乙二人同时走同一条路,甲走完需20分钟,乙走完需30分钟,甲和乙的速度比是2∶3。( )

3.在比例尺是8∶1的图纸上,2厘米的线段表示零件的实际长16厘米。( )

4.两个圆的周长比是2∶3,面积之比是4∶9。( )

二、选择题

1、固定电话先收座机费24元,以后按一定标准时间加收通话费,则每月应交电话费与通话时间( )

A.成正比例 B.成反比例 C. 不成比例

三、解答应用题。

1、在一幅地图上,5厘米的长度表示地面上150千米的距离,求这幅地图的比例尺。

2、在比例尺是1∶6000000的地图上,量得甲地到乙地的距离是25厘米,求两地间的实际距离。若一架飞机以每小时750千米的速度从北京飞往南京,大约需要多少小时?

3、混凝土的配料是水泥∶黄沙∶石子=1∶2∶3。现在要浇制混凝土楼板40块,每块重0.3吨,需要水泥、黄沙、石子各多少吨做原料?

4、一艘轮船,从甲港开往乙港,每小时航行25千米,8小时可以到达目的地.从乙港反回甲港,每小时航行20千米,几小时可以到达?

5、某工人要做504个零件,他5天做了120个,照这样的速度,余下的还要做多少天?

6、一间大厅,用边长6分米的方砖铺地,需用324块;若改铺边长4分米的方砖,需要多用几块?

7、一根皮带带动两个轮子,大轮直径30厘米,小轮直径10厘米;小轮每分钟转300转,大轮每分钟转几转?

8、一件工程,如果34人工作需20天完成,若要提前3天完工,现在需要增加几名工人?

9、一本文艺书,每天读6页,20天可以读完,要提前8天看完,每天要比原来多看几页?

10、羊毛衫厂共有工人538人,分三个车间,第一车间比第三车间少12人,已知第二车间与第三车间的人数比是3∶4。三个车间各有多少人?

11、学校把购进的图书的60%按2∶3∶4分配给四、五、六三个年级。已知六年级分得56本,学校共购进图书多少本?

12、小明居住的院内有4家,上月付水费39.2元,其中张叔叔家有2人,王奶奶家有4人,李阿姨家有3人,小明家有5人,若按人口计算,他们四家各应付水费多少元?

13、某生产队由15个队员收割一块双季稻,8小时能割完,但割了3小时以后,由于天气突然发生变化,增加了10个社员进行抢收,问还需多少小时才能割完这块双季稻?

最新比例的数学应用题 篇3

1、 一个长方形的周长是24厘米 ,长与宽的比是 2:1 ,这个长方形的面积是多少平方厘米?

2、 一个长方体棱长总和为 96 厘米 ,长、宽、高的比是 3∶2 ∶1 ,这个长方体的体积是多少?

3、 一个长方体棱长总和为 96 厘米 ,高为4厘米 ,长与宽的比是 3 ∶2 ,这个长方体的体积是多少?

4、 某校参加电脑兴趣小组的有42人,其中男、女生人数的比是 4 ∶3,男生有多少人?

5、 有两筐水果,甲筐水果重32千克,从乙筐取出20%后,甲乙两筐水果的重量比是4:3,原来两筐水果共有多少千克?

6、 做一个600克豆沙包,需要面粉 红豆和糖的比是3:2:1,面粉 红豆和糖各需多少克?

7、 小明看一本故事书,第一天看了全书的1/9,第二天看了24页,两天看了的页数与剩下页数的比是1:4,这本书共有多少页?

8、 一个三角形的三个内角的比是2:3:4,这三个内角的度数分别是多少?

答案如下:

1、S=(2/3×24/2)×(1/3×24/2)=32平方厘米

2、V=(3/6×96/4)×(2/6×96/4)×(1/6×96/4)=384立方厘米

3、V=4×[3/5×(96/4-4)]×[2/5×(96/4-4)]=384立方厘米

4、男=4/7×42=24(人)

5、32+32×3/4÷80%=62(千克)

6、面粉=300克 红豆=200克 糖=100克

7、24÷(1/5-1/9)=45×6=270页

8、180×2/9=40° 答:为40°,60°,80°

最新比例的数学应用题 篇4

教学目标:

1.在自主探索学习中理解按比例分配的意义,掌握按比例分配应用题的结构特点以及解题方法,能正确解答按比例分配应用题。

2.培养发现问题、提出问题、分析问题、解决问题的能力,合作学习的能力和总纳概括的能力。

3.创设民主和谐的学习氛围,在关注培养学生主动的探索意识、灵活的思维品质过程中形成积极的学习情感。

重点与难点:

沟通比与分数之间的联系,理解按比例分配应用题的结构特征和解题方法。

教学过程:

课前让每一个学生到生活中调查某些事物各组成部分的比,并且说一说是怎么获得这些信息的。

一、引发阶段

1、情境诱发

陈叔叔和王叔叔,他们俩合资开了一家文具厂,经过一年的辛勤经营,除去交税、发工资和扩张等费用,还净多10万元。他们坐在一起商量分钱的事。(课件)(陈叔叔和王叔叔,合资开了一家文具厂,一年的净利润是10万元。他们两人各应分得多少钱?)

2.猜猜看,他们是怎么分这10万元钱的?如果我再给你这条信息---(陈叔叔和王叔叔两人投资额的比是2:3,构成例1)你还是坚持原来的观点吗?

3.陈叔叔和王叔叔各分得多少万元?你会算吗

二、探究阶段

1、自主探索

先自己独立尝试着解答,然后把你的想法告诉你们小组内的同学,说说你是怎么想的,比比谁的方法更好。

2、集体交流。

哪个小组先上台发言?其他同学可要听仔细了哦!如果有不同的解法可以补充交流,听清楚他们的方法了吗?谁再来说一遍?

其他同学有意见或不明白的地方吗?可以向发言人提问。

答案是否正确呢?你们有什么办法验证?

3、你们觉得哪种方法比较简便,和前面的知识联系最密切,而且有一定的规律性?

4、分析归纳

这种应用题有什么特点?(告诉我们总数,按照比例分成几部分)

你们在刚才的解答过程中,已经探索出了一种解决实际问题的方法,那就是按比例分配。

一个数量按照一定的比例来进行分配,这种分配方法叫做。

5、你见到过、听说过现实生活中的按比例分配的情况吗?

我省中考热点学校招生计划按比例分配

证券市场中股票发行是按比例分配的。

美国总统大选各州选票是按比例分配的。

在建筑业中也有很多地方用到按比例分配。

三、实践应用

只要你做个有心人,你一定会有很多收获。其实在你身上也藏着按比例分配的学问呢!

出示:身体中的按比例分配12周岁的儿童头部与头以下的高度的比一般是2:13。

看到这条信息,你想到了什么?说说你的身高,算一算自己的头部的高度,看看你估计得准不准?(我的身高是150厘米,我的头部高度约是多少)

四、情境延续

1.再看例1

文具厂在张叔叔和王叔叔的经营下,越来越红火。第二年,李叔叔也投资加入。他加入一年后,纯利润可能会达到多少万元?这时,他们三人各得多少万元?出示(这一年,张、王、李三人的投资分别是4万元,5万元,3万元)

2.尝试解答,同桌互相讨论。

3.展示交流各种方法,你打算如何检验?

4.这题与刚才做的题有什么相同点和不同点?

相同点:都告诉我们总数,都是按照比例分成几部分(都可以看成占总数的几分之几)

不同点:刚才是两种量的比,现在是三种量的比。

五、发展应用:

1、有些同学不但数学学得好,还十分爱看书。学校校长非常支持,决定投入6000元,添置一些科技书、故事书和优秀作文选。假如你是校长,会把这6000元按照怎样的比来分配?

1:2:3代表什么?你为什么要这样设定?

1:1:1表示什么意思?(平均分)

请你选择其中的一个比,算一算各花多少钱?

反馈交流。

有用1:1:1来解的吗?哪种解法最简单?

按1:1:1分配就是平均分,平均分是特殊的按比例分配。

2、甲乙两数的平均数是25,两数之比为2:3。求甲数与乙数。

3、六年级有92名学生参加三个课外兴趣小组。第一组与第二组人数的比是2:3,第一组与第三组人数的比是3:4。三个小组各有多少人?

六、反思评价

1.在这节课中,你最喜欢哪一部分知识的学习?为什么?还有什么疑惑吗?

2.在这节课中,你的同桌哪些地方最值得你学习?

最新比例的数学应用题 篇5

教学目标

1.复习正反比例的意义,练习判断两种相关联的量成正比例还是成反比例。

2.复习用正比例方法解答应用题。

3.复习用反比例方法解答应用题。

教学重点和难点

判断两种相关联的量成什么比例;确定解答应用题的方法。

教学过程设计

(一)复习数量关系

判断两种相关联的量成不成比例,确定解答应用题的方法。

1.被除数一定,除数和商。

2.一条路,已修的和未修的。

3.梯形的上、下底长度一定,梯形的面积和它的高度。

4.每块砖的面积一定,砖的块数和铺地面积。

5.挖一条水渠,参加的人数和所需要的时间。

6.从甲地到乙地所需的时间和所行走的速度。

7.单位面积一定,播种面积和总产量。

8.时间一定,速度和距离。

9.订阅《北京儿童》的份数和所需钱数。

(二)复习应用题

1.某工厂八月份计划造一批机床,开工8天就造了56台,照这样速度到月底可生产多少台?

第一步,先找对应关系:

8天56台

31天?台

第二步,判断成什么比例?(每天生产的台数一定,成正比例。)

请你在对应关系的旁边写上正字,决定用正比例方法做。

解设到月底可生产x台。

x=217

答:照这样速度月底可生产217台。

2.一批纸张,钉成20页一本的练习本,能钉600本。如果钉成24页一本的练习本,能钉多少本?

第一步,先找对应关系:

20页600本

24页?本

第二步,判断成什么比例?(纸张总页数一定,成反比例。)

请你在对应关系的旁边写上反字,决定用反比例方法做。

解钉成24页一本的练习本,可钉x本。

24x=20600

x=500

答:如果钉成24页一本的练习本可钉500本。

学生独立地用老师教的分析应用题的思路和方法在本上做两道题。

(1)火车3小时行135千米,用同样的速度5小时可以行多少千米?

(2)有一批砖,25人去搬,6小时搬完,如果30人去搬,需要多少小时搬完?

(三)练习解答两步的比例应用题

1.李涛读一本书,每天读6页,30天可以读完。如果每天多读4页,多少天可以读完?

黑板上的对应关系变成:

解设x天读完。

(6+4)x=630

10x=630

x=18

答:18天可以读完。

2.在第1题的基础上,改变问题。

李涛读一本书,每天读6页,30天可以读完,如果每天多读4页,提前几天读完?

对应关系:

解设如果每天多读4页,x天读完。

(6+4)x=630

10x=630

x=18

30-18=12(天)

答:提前12天读完。

(指导学生分析、比较。)

以上两道题,什么发生了变化?什么没有变?(条件和问题发生了变化,使原来的题复杂了一步,但用反比例解的方法没有变。)

练习(学生独立分析,做题。)

1.一辆汽车从甲城开往乙城,3小时行驶105km。用同样的速度又行驶了1.2h到达乙城,甲城到乙城有多少千米?

解设甲城到乙城有x千米。

3x=105(3+1.2)

x=147

答:甲城到乙城有147km。

2.光明乡有144公顷水稻,5天收割了90公顷,照这样计算,剩下的几天可以收割完?

解设剩下的x天可以收割完。

90x=554

x=3

答:剩下的3天可以收割完。

(再用间接设的方法做两道题。)

1.纺织厂的织布车间过去每人看16台织布机,每班需要42人,现在改进操作方法,每人看24台。每班可以节约几人?

1642=24x

42-x

2.某机器厂原计划每天生产机器48台,15天可以完成任务,现在要12天完成任务,每天应增产多少台?

12x=4815

x-48

(四)总结

这节课我们主要复习了解正、反比例应用题的分析、思考方法。拿到应用题不要急于先做,要先读题,找出对应关系,判断是正比例还是反比例,就可以正确解答了。

课堂教学设计说明

解答正、反比例应用题是有其独特的思考方法的,所以在教案的设计上重点放在指导、解答正反比例应用题的思考方法上。

第一层次,先做判断练习,判断两个相关联的量是否成比例,成什么比例,因为这是正确解答正反比例应用题的基础。

第二层次,进行最基本的正反比例应用题的训练,着重训练学生怎样找对应关系,如何正确判断,然后再动笔做题,目的是培养学生良好的学习习惯和学习方法。

第三层次,进行间接设的正、反比例应用题的训练,目的是在原来分析问题的基础上,使学生的思维更高一步。

板书设计

最新比例的数学应用题 篇6

例1某车间要加工2220个零件,单独做,甲、乙、丙三人所需工作时间的比是4∶5∶6。现在由三人共同加工,问完成任务时,三人各加工了多少个?

错解由甲、乙、丙三人单独做所需工作时间的比是4∶5∶6,推出甲、乙、丙三人工作效率的比是6∶5∶4,用按比例分配的思路解。

评析上述解答错在把甲、乙、丙三人工作效率的比看成是6∶5∶4。诚然,如果甲、乙二人工作时间的比是4∶5,那么,甲、乙二人工作效率的比就是5∶4,这是正确的。但是,把甲、乙、丙三人工作时间的连比是4∶5∶6转化成甲、乙、丙三人工作效率的连比是6∶5∶4,那就大错了!不错,工作效率的比等于工作时间比的反比。从已知条件看,甲、乙二人工作时间的比是4∶5,所以,甲、乙二人工作效率的比是5∶4;乙、丙二人工作时间的比是5∶6,所以,乙、丙二人工作效率的比是6∶5。这里的“5∶4”表示甲5份,乙4份,“6∶5”表示乙6份,丙5分,两个比都是两重相比,其中同样表示“乙”有几份的数在前后两个比中并不相同,我们怎么能将这两个比直接变成甲、乙、丙三人工作效率的连比呢?显然,上述解答中把甲、乙、丙三人工作效率的连比看成是6∶5∶4,是错误的。

正确的解答应当是:甲、乙、丙三人工作效率的比=

容易看出,因为5∶4=15∶12,6∶5=12∶10,所以,由上述“甲、乙二人工作效率的比是5∶4,乙、丙二人工作效率的比是6∶5”,也可以得到甲、乙、丙三人工作效率的比是是15∶12∶10。

例2有两瓶同样重的盐水,甲瓶盐水盐与水重量的比是1∶8,乙瓶盐水盐与水重量的比是1:5。现将两瓶盐水并在一起,问在混合后的盐水中盐与水重量的比是多少?

错解认为在甲瓶盐水中,盐的重量是“1”,水的重量是“8”,在乙瓶盐水中,盐的重量是“1”,水的重量是“5”,于是,将两瓶盐水并在一起,便得到盐的重量是(1+1=)2,水的重量是(8+5=)13。

(1+1)∶(8+5)=2∶13

答:在混合后的盐水中盐与水重量的比是2∶13。

评析上述解答的主要错误是把两种物质重量的最简比,看成了就是两种物质具体重量的比。甲瓶盐水盐与水重量的比是1∶8,不等于说在这瓶盐水中盐的重量是1千克,水的重量是8千克,乙瓶的情况也是一样。从已知条件可以看出,在甲瓶盐水中,盐有1份,水有8份,盐和水一共有(1+8=)9(份),在乙瓶盐水中,盐有1份,水有5份,盐和水一共有(1+5=)6(份)。因为两瓶盐水是“同样重”,但甲瓶有9份,乙瓶只有6份,所以,可见两瓶盐水中每“1份”的重量有多少是不相同的。上述解答简单地将两瓶盐水中每份重量不同的盐和水的份数分别相加,然后再将两个“和”组成一个比,便造成了解答的错误。

正确的解答是:1∶8=2∶16,2+16=18;

1∶5=3:15,3+15=10。(2+3)∶(16+15)=5:31

答:在混合后的盐水中盐与水重量的比是5∶31。

最新比例的数学应用题 篇7

教学目标

1.使学生理解按比例分配的意义.

2.掌握按比例分配应用题的特征及解题方法.

3.培养学生应用所学知识解决实际问题的能力.

教学重点

掌握按比例分配应用题的特征及解题方法.

教学难点

按比例分配应用题的实际应用.

教学过程

一、复习引入

(一)根据条件,提问。(男生和女生及全班人数的关系)

已知六年级(3)班女生人数和男生人数的2/3.

(二)口答应用题

六年级(3)班和二年级(3)班共同承担了面积为100平方米的卫生区保洁任务,平均每个班的保洁区是多少平方米?

1.学生口答:1002=50(平方米)

2.教师提问:这是一道分配问题,分谁?(100平方米)怎么分?(平均分)

六年级学生和二年级学生承担同样多的卫生区保洁任务,合理吗?这样分还是平均分吗?

3.谈话引入。

在日常生活中,很多分配问题都不是平均分配,那么,你们想知道还可以按照什么分配吗?今天我们继续研究分配问题.(板书:分配)

二、讲授新课

(一)把复习题2增加条件如果按3∶2分配,两个班的保洁区各是多少平方米?

(二)教师提问

1.分谁?(100平方米)

2.怎么分?(按3∶2分)

3.求的是什么?

(三)思考:由如果按3∶2分配这句话你可以联想到什么?

(四)尝试解答:用你学过的知识解答例题,并说一说怎么想的?

(五)比较思路:这几种方法中,你认为哪种方法好?为什么?

(六)这道题做得对不对呢?我们怎么检验?

1.两个班级的面积相加,是否等于原来的总面积.

2.把六年级和二年级的面积化成比的形式,化简后的结果是不是等于3∶2.

(七)练习

一个农场计划在100公顷的地里播种大豆和玉米.播种面积的比是3∶2.两种作物各播种多少公顷?

(八)教学例3

学校把栽280棵树的任务,按照六年级三个班的人数,分配给各班.一班有47人,二班有45人,三班有48人.三个班各应栽树多少棵?

1.讨论:这道题与前面所做的题有什么区别?

分配什么?按照什么来分?

怎样计算各班栽的棵数占总棵数的几分之几?

2.学生独立解题

(1)三个班的总人数:47+45+48=140(人)

(2)一班应栽的棵数:28047/140=94(棵)

(3)二班应栽的棵数:28045/140=90(棵)

(4)三班应栽的棵数:28048/140=96(棵)

答:一班、二班、三班各应栽94棵、90棵、96棵.

(九)小结

三、巩固练习

(一)六年级(2)班共有42人,男、女生人数的比是3∶4,男、女生各有多少人?

(二)一个三角形三条边的长度比是3∶5∶4.这个三角形的周长是36厘米,三条边的长度分别是多少厘米?

1.还是按比例分配问题吗?

2.如果是四个数的连比你还会解答吗?

(三)判断

一个长方形周长是20厘米,长与宽的比是7∶3,求长与宽各是多少厘米?

7+3=10207/10=14(厘米)203/10=6(厘米)

(四)思考:平均分是不是按比例分配的应用题?按照几比几分配的?

四、课堂小结

今天我们学习了什么新知识?这种应用题有什么特点?应该怎样解答?

五、课后作业

(一)一个乡共有拖拉机180台,其中大型拖拉机和手扶拖拉机台数的比是2∶7.这两种拖拉机各有多少台?

(二)建筑工人用2份水泥、3份沙子和5份石子配置一种混凝土.配置6000千克这种混凝土,需要水泥、沙子和石子各多少千克?

(三)用84厘米长的铁丝围成一个三角形,这个三角形三条边长度的比是3∶4∶5.这个三角形三条边各是多少厘米?

(四)一种药水是把药粉和水按照1∶100的比例配成的.要配成这种药水4040千克,需要药粉多少千克?

比的应用一课是按比例分配应用题在实际生活中的应用。长期以来,应用题教学在教材和课堂教学等方面,其应用性未能引起足够的重视,使得教学流于简单的解题训练,我在设计此课时,力求改变以往的教学模式和方法,体现应用性。由于按比例分配计算应用较广,学生有很多应用机会,因此通过从生活实际引入按比例分配的计算,并应用所学知识解决了一些简单的实际问题,使学生真切地感受到数学知识和生活实际的紧密联系,数学来源于生活,并能解决实际问题,充分体现了应用题教学的应用性。数学教学活动必须建立在学生的认知发展水平和已有的知识经验、生活经验基础之上,教师应激发学生的学习积极性。向学生提供充分从事数学活动的机会,帮助他们在自主探索和合作交流的过程中真正理解和掌握基本的数学知识与技能,数学思想和方法,获得广泛的数学活动经验,学生是数学学习的主人,教师是数学学习的组织者、引导者和合作者。

最新比例的数学应用题 篇8

教学要求:

1.使学生认识正、反比例应用题的特点,理解、掌握用比例知识解答应用题的解题思路和解题方法,学会正确地解答基本的正、反比例应用题。

2.进一步培养学生应用知识进行分析、推理的能力,发展学生思维。

教学重点:认识正、反比例应用题的特点。

教学难点:掌握用比例知识解答应用题的解题思路。

教学过程:

一、复习引新

1.判断下面的量各成什么比例。

(1)工作效率一定,工作总量和工作时间。

(2)路程一定,行驶的速度和时间。

让学生先分别说出数量关系式,再判断。

2.根据条件说出数量关系式,再说出两种相关联的量成什么比例,并列出相应的等式。

(1)一台机床5小时加工40个零件,照这样计算,8小时加工64个。

(2)一列火车行驶360千米。每小时行90千米,要行4小时;每小时行80千米,要行x小时。

指名学生口答,老师板书。

3.引入新课。

从上面可以看出,生产、生活中的一些实际问题,应用比例的知识,也可以根据题意列一个等式。所以,我们以前学过的一些应用题,还可以应用比例的知识来解答。这节课,就学习正、反比例应用题。(板书课题)

二、教学新课

1.教学例1。

(1)出示例1,让学生读题。

提问:以前我们是怎样解答的(板书算式)先求什么,是按怎样的数量关系式来求的这道题里哪个数量是不变的量

(2)说明:这道题还可以用比例知识解答。

提问:题里照这样计算说明什么一定数量之间有怎样的关系式,两种相关联的量成什么比例关系题里两次抽水的总量与时间对应数值各是多少这两次对应数值的什么相等你能根据对应数值的比值相等,列出等式来解答吗请大家自己试一试(启发弄清要设未知数x)。学生练习解题,然后口答,老师板书。追问:按过去的方法是先求什么再解答的先求单一量的应用题现在用什么比例关系解答的

(3)小结:

提问:谁来说一说,用正比例知识解答这道应用题要怎样想怎样做指出:先按题意列关系式判断成正比例,再找出两种相关联量里相对应的数值,然后根据正比例关系里比值一定,也就是两次抽水相对应数值比的比值相等,列等式解答。

2.教学改编题。

出示改变的问题,让学生说一说题意。请同学们按照例1的方法自己在练习本上解答。同时指名一人板演,然后集体订正。指名说一说是怎样想的,列等式的依据是什么。

3.教学例2。

(1)出示例2,学生读题。

提问:以前我们是怎样解答的(板书算式)这样解答先求什么是按怎样的数量关系式来求的(板书:速度时间=路程)这道题里哪个数量是不变的量?

(2)谁能仿照例l的解题过程,用比例知识来解答例27请来试一试。指名板演,其余学生做在练习本上。学生练习后提问是怎样想的。速度和时间的对应关系怎样,检查列式解答过程,结合提问弄清为什么列成积相等的等式解答。

(3)提问:按过去的方法是先求什么再解答的先求总数量的应用题现在用什么比例关系解答的谁来说一说,用反比例关系解答这道应用题是怎样想,怎样做的指出;解答例2要先按题意列出关系式,判断成反比例,再找出两种相关联量里相对应的数值,然后根据反比例关系里积一定,也就是两次航行相对应数值的乘积相等,列等式解答。

4.教学改编题。

出示改变的条件和问题,让学生说一说题意。指名一人板演,其余学生在练习本上独立解答。集体订正,让学生说一说怎样想的,根据什么列等式的。

5.小结解题思路。

请同学们看一下黑板上例1、例2的解题过程,想一想,应用比例知识解答应用题,是怎样想怎样做的同学们可以相互讨论一下,然后告诉大家。指名学生说解题思路。指出:应用比例知识解答应用题,先要判断两种相关联的量成什么比例关系,(板书:判断比例关系)再找出相关联量的对应数值,(板书:找出对应数值)再根据正、反比例的意义列出等式解答。(板书:列出等式解答)追问:你认为解题时关键是什么(正确判断成什么比例)怎样来列出等式(正比例比值相等,反比例乘积相等)

三、巩固练习

1.做练一练。

指名两人板演,其余学生做在练习本上。集体订正,让学生说说为什么列出的等式不一样。指出:只有先正确判断成什么比例关系,才能根据正比例或反比例的意义正确列式。

2.做练习十第1题。

让学生用比例知识列出解题的式子,然后口答,老师板书。提问:这两题有什么相同和不同的地方按过去算术解法都要先求什么量用比例知识解答有什么相同的地方(都成正比例关系,都列成比值相等的式子来解答)有什么不同的地方(未知数,表示的数量不同,在等式里位置也不同)说明;在正确判断成比例关系后,要按照比值相等来列等式解答。列等式时还要注意数量之间的对应关系。

3.做练习十第2题。

让学生默读题目。提问:用算术方法解答都要先求什么数量这两题里两种数量成什么关系,为什么要按什么相等来列等式

四、课堂小结

这节课学习了什么内容正、反比例应用题要怎样解答?你还认识了些什么

五、布置作业

课堂作业;完成练习十第1、2题的解答。

家庭作业:练习十第3题。

最新比例的数学应用题 篇9

1、为创建海华公司,张、王、李三人分别投资100万元、120万元和80万元。在他们三人的共同努力下,到年末,公司共盈利60万元,你认为该如何合理分配这笔钱,每人分别得多少?

2、甲乙两地相距360千米,一辆汽车从甲地到乙地计划7小时行完全程,汽车的速度如下表,问能否在规定的时间内行完全程?(计算后简要说明)

3、在比例尺是的地图上,量得甲乙两地的距离为4.5厘米,如果一辆客车和货车同时从甲乙两地相对开出,经过3小时相遇。已知客车每小时行65千米,那么这辆货车每小时行多少千米?

4、在比例尺是1:3000000的地图上,量得A、B两城之间的距离是2.4厘米。在A、B两城之间有一中途停靠站C,A、B两城到C站的距离比是7:5。一辆汽车从B城到C站共用了0.6小时,求这辆汽车的速度。

5、甲乙两人分别从相距255千米的两地同时出发相向而行,已知甲乙速度比为10:7,两人相遇时各行了多少千米?

6、小淘气看一本科技书,第一天看了全书的1,第二天看了42页,这时看了的页数与剩6下的页数比是2:5,这本科技书一共有多少页?

7、把长35厘米的圆柱体按3∶2截成了一长一短两个小圆柱体后,表面积总和增加了30平方厘米。求截成的较长一个圆柱的体积。

最新比例的数学应用题 篇10

(1)水果店一天运进苹果、香蕉、梨共390千克,苹果的重量是梨的1.5倍,香蕉的重量是梨的3/4,三种水果各运进多少千克?

(2)一缸水,用去1/2和5桶,还剩30%,这缸水有多少桶?

(3)有一快棱长20厘米的正方体木料,刨成一个底面直径的圆柱体,刨去木料的体积是多少?

(4)一根钢管长10米,第一次截去它的7/10,第二次又截去余下的1/3,还剩多少米?

(5)两个小组装配收音机,甲组每天装配50台,第一天完成了总任务的10%,这时乙组才开始装配,每天装配40台,完成这批任务时,甲组做了多少天?

(6)修筑一条公路,完成了全长的2/3后,离中点16。5千米,这条公路全长多少千米?

(7)师徒两人合做一批零件,徒弟做了总数的2/7,比师傅少做21个,这批零件有多少个?

(8)两队修一条公路,甲队每天修全长的1/5,乙队独做7.5天修好。如果两队合修2天后,其余由乙队独修,还要几天完成?

(9)仓库里有一批化肥,第一次取出总数的2/5,第二次取出总数的1/3少12袋,这时仓库里还剩24袋,两次共取出多少袋?

(10)前轮在720米的距离里比后轮多转40周,如果后轮的周长是2米,求前轮的周长。

11、为创建海华公司,张、王、李三人分别投资100万元、120万元和80万元。在他们三人的共同努力下,到年末,公司共盈利60万元,你认为该如何合理分配这笔钱,每人分别得多少?

12、甲乙两地相距360千米,一辆汽车从甲地到乙地计划7小时行完全程,汽车的速度如下表,问能否在规定的时间内行完全程?(计算后简要说明)

13、在比例尺是的地图上,量得甲乙两地的距离为4.5厘米,如果一辆客车和货车同时从甲乙两地相对开出,经过3小时相遇。已知客车每小时行65千米,那么这辆货车每小时行多少千米?

14、在比例尺是1:3000000的地图上,量得A、B两城之间的距离是2.4厘米。在A、B两城之间有一中途停靠站C,A、B两城到C站的距离比是7:5。一辆汽车从B城到C站共用了0.6小时,求这辆汽车的速度。

15、甲乙两人分别从相距255千米的两地同时出发相向而行,已知甲乙速度比为10:7,两人相遇时各行了多少千米?

16、小淘气看一本科技书,第一天看了全书的1,第二天看了42页,这时看了的页数与剩6下的页数比是2:5,这本科技书一共有多少页?

17、把长35厘米的圆柱体按3∶2截成了一长一短两个小圆柱体后,表面积总和增加了30平方厘米。求截成的较长一个圆柱的体积。

18、一个直角三角形的周长为36厘米,三条边的长度比是3 :4 :5,这个三角形的面积是多少平方厘米?

19、一瓶盐水,盐和水的重量比是1 :24,如果再放入75克水,这时盐与水的重量比是1 :27,原来瓶内盐水重多少千克?

20、盒子里有三种颜色的球,黄球个数与红球个数的比是2 :3,红球个数与白球个数的比是4 :5。已知三种颜色的球共175个,红球有多少个?

21、两个相同的瓶子都装满了酒精溶液,一个瓶中酒精与水的体积比是3 :1,另一个瓶中酒精与水的体积比是4 :1。如果把这两个瓶中酒精溶液混合,混合溶液中酒精和水的比是多少?

22、五角人民币与贰角人民币的张数比为12 :35,那么伍角与贰角的总钱数比为多少?

23、甲、乙、丙三个数的平均数是60。甲、乙、丙三个数的比是3 :2 :1。甲、乙、丙三个数各是多少?

24、一个直角三角形的两个锐角度数的比是2 :1,这两个锐角分别是多少度?

25、大、小两瓶油共重2.7千克,大瓶的油用去0.2千克后,剩下的油与小瓶内油的重量比是3 :2。求大、小瓶里各装油多少千克?

26、甲、乙、丙三位同学共有图书108本,乙比甲多18本,乙与丙的图书数之比是5 :4,求甲、乙、丙三人各有图书多少本?

27、一个直角三角形的三条边总和是60厘米,已知三条边的比是3 :4 :5.这个直角三角形的面积是多少平方厘米?

28、一批零件分给甲、乙、丙三人完成,甲完成了总任务的30%,其余的由乙、丙按3∶4来做,丙共做了200个,问这批零件共有多少个?

29、甲、乙、丙三人的彩球数的比例为9:4:2,甲给了丙30个彩球,乙也给了丙一些彩球,比例变为2 :1 :1。乙给了丙多少个彩球?

30、某车间生产了甲、乙、丙三种配套机件共1280只,其中甲乙两种机件只数的比是3∶2,丙种机件比甲种多80只,丙种机件生产了多少只?

31、王老师用100元去买了20支圆珠笔和10支钢笔,每支钢笔的价钱和每支圆珠笔的价钱的比是3 :1。问买圆珠笔和钢笔各花了多少元?

32、甲、乙两包糖果的重量的比是4 :1,如果从甲包取出10克放入乙包后,甲、乙两包糖果重量的比变为7 :5。那么两包糖果重量的总和是多少?

33、某小学男、女生人数之比是16 :13,后来有几位女生转学到这所学校,男、女生人数之比变成为6 :5,这时全体学生共有880人,问转学来的女生有多少人?

34、小明读一本书,已读的和末读的页数比是1 :5。如果再读30页,则已读的和末读的页数之比为3 :5。这本书共有多少页?

(35)在一幅比例尺是1:30000 的地图上,量得东、西两村的距离是12.3厘米,东、西两村的实际距离是多少米?

(36)甲地到乙地的实际距离是120千米,在一幅比例尺是1:6000000的地图上,应画多少厘米?

(37)一幅地图,图上的4厘米,表示实际距离200千米,这幅图的比例尺是多少?

(38)在一幅比例尺是1:4000 的平面图上,量得一块三角形的菜地的底是12厘米,高是8厘米,这块菜地的实际面积是多少公顷?

(39)一辆汽车2小时行驶130千米。照这样的速度,从甲地到乙地共行驶5小时。甲、乙两地相距多少千米?

(40)一辆汽车从甲地开往乙地,每小时行64千米,5小时到达。如果要4小时到达,每小时需行驶多少千米?

(41)一幅地图,图上的4厘米,表示实际距离200千米,这幅图的比例尺是多少?

(42)甲、乙两地相距240千米,画在比例尺是1∶3000000的地图上,长度是多少厘米?

(43在一幅地图上,用3厘米的线段表示实际距离600千米。量得甲、乙两地的距离是4.5厘米,甲、乙两地的实际距离是多少千米?

(44) 运来一批纸装订成练习本,每本36页,可订40本,若每本30页,可订多少本?

46、大小两个圆,大圆周长与直径的比,等于小圆周长与直径的比。( )

53、从家到学校,小明用8分钟,小红用9分钟,小明和小红的速度比是8:9( )

59、因为25×12×5=1,所以25、12、5互为倒数。( )

61、10克盐溶解在100克水中,这时盐和盐水的比是1:10。( )

77、如果一个三角形的两个内角之和是100°,那么这个三角形一定是锐角三角形。( )

78、用98颗黄豆做发芽实验,结果全部发芽。这些黄豆的发芽率是98%。( )

80、扇形统计图能清楚地表明各部分数量同总数之间的关系。( )

最新比例的数学应用题 篇11

关于比例的数学应用题(精选50题)

应用题一般由文字和数字相结合,给出条件,最后提取文中的数字进行正确的运算作答。应用题一直是小学数学中的难点与得分高点,很多同学也是因为应用题而与别人拉开分距。攻破应用题,既是提高数学成绩的一个重要环节,也是锻炼孩子思维理解能力的主要方式。今天,给大家准备了关于比例的数学应用题(精选50题),供大家练习,希望大家都能有一个好成绩!

最新比例的数学应用题5篇


最新比例的数学应用题 篇1

应用题

1、在一幅地图上,用3厘米的线段来表示实际距离600千米。在这幅地图上,量得甲、乙两地的距离是4.5厘米,甲、乙两地的实际距离是多少千米?

2、在比例尺1:1000000的地图上,量得甲、乙两城的距离是6厘米,如果改画在比例尺是1:400000的地图上,甲、乙两城应该画多少厘米?

3、在比例尺是1:2000000的地图上,量得甲乙两地的距离为3.6厘米,如果汽车以每小时30千米的速度从甲地到乙地,多少小时可以到达?

4、篮球场长28米,宽15米。请你用1:500的比例尺画出它的平面图。

5、一辆汽车2小时行驶130千米。照这样的速度,从甲地到乙地共行驶5小时。甲、乙两地相距多少千米?

6、修一条路,如果每天修120米,8天可以修完;如果每天多修30米,几天可以修完?

7、甲乙两地相距350千米,一辆快车和一辆慢车同时从两地相向开出,3.5小时后相遇,已知快车和慢车的速度比是3:2,这两列火车的速度分别是多少?

8、甲、乙、丙三数的比是2:3:4,平均数是12,三数各是多少?

9、在一幅比例尺是1:50000的平面图上,量的一段公路长16.8厘米,现在把修筑这条公路的任务按3:5分配给甲、乙两个修路队,这两个修路队各要修多少米?

10、丁丁、小刚、小明三个同学喜欢文学,假期中阅读了大量文学作品,丁丁、小刚、小明三人阅读文学作品的本数是4:3:5、已知丁丁比小刚多读30本,那么阅读作品最多的.同学比读的少的同学多读了多少本?

答案

1、600÷3×4.5=900(千米)

2、6÷1/1000000×1/400000=15(厘米)

3、3.6×2000000÷100000÷30=2.4(小时)

4、略。

5、解:设甲、乙两地相距x千米。

x/5=130/2

x=325

6、解:设x天可以完成。

(120+30)x=120×8

x=625

7、350÷3.5=100(千米)

快车速度:100×3/3+2=60(千米)

慢车速度:100×2/3+2=40(千米)

8、12×3=36,36÷(2+3+4)=4,甲数:4×2=8,乙数:4×3=12,丙数:4×4=16

9、16、8×50000÷100=8400(米)

甲队修的路程:8400×3/3+5=3150(米)

乙队修的路程:8400×5/3+5=5250(米)

10、30÷(4-3)×(5-3)=60(本)

最新比例的数学应用题 篇2

教材分析

这节课是在学习了“已知一个数的几分之几是多少,求这个数”的分数应用题的基础上,根据稍复杂的求一个数的几分之几是多少的分数应用题的数量关系,使学生掌握解题思路,学会用方程解答。根据新旧知识的联系,抓住了数量关系相同,通过复习题的分析解答,让学生找出熟悉的数量关系,再把题进行改动变化。在边画图、边分析的过程中,沟通了知识间的联系,便于学生理解和思维,促进了学生分析思维能力的发展和综合运用知识灵活解决实际问题的能力。

学情分析

在已经学习了,已知一个数的几分之几是多少,求这个数是多少的问题的基础上,六年级学生能在一定的基础之上去拓展,去学习更新的知识。

教学目标

逆向思维,能根据具体的数量和分率,求出单位“1”的量。通过教学, 使学生在理解分数除法意义及掌握分数乘法应用题解题思路的基础上,掌握已知一个数的几分之几是多少求这个数的稍复杂分数除法应用题的解题思路和方法,能比较熟练地用方程解答一些简单的实际问题。

教学重点和难点

1、 能确定单位“1”,理清题中的数量关系。

2、利用题中的等量关系用方程解答。

教学过程

一、1、苹果的重量是X千克,梨的重量比苹果多5千克 。

⑴、梨的重量比苹果多了( )千克。

⑵、梨的重量是( )千克。

2、钢笔X元,比毛笔少了3元 。

⑴、钢笔比毛笔少了( )元。

⑵、毛笔是( )元。

3、小结:解答分数应用题的关键是找准单位“1”,如果单位“1”的具体数量是已知的,要求单位“1”的几分之几是多少,就可以根据分数乘法的意义,直接用乘法计算。

二、新授课

1、教学补充例题:水果店运来了一些苹果,已经卖了36千克 ,还剩下20千克,水果店运来了多少苹果?

(1)卖了 是什么意思?应该把哪个数量看作单位“1”?

(2)引导学生理解题意,画出线段图。

(3)引导学生根据线段图,分析数量关系式:运来苹果的重量-卖了的重量=剩下的重量

(4)指名列出方程。解:设运来苹果X千克。

x-36=20

2、教学例2

(1)出示例题,理解题意。

(2)比航模组多是什么意思?引导学生说出:是把航模组的人数看作单位“1”,美术组少的人数占航模组的 (1+)

(2)学生试画出线段图。

(3)根据线段图,结合题中的分率句,列出数量关系式:

航模小组人数+美术小组比航模小组多的人数=美术小组人数

(4)根据等量关系式解答问题。

解:设航模小组有人。

(1+)=25

=25÷

=20

答:略。

三、小结

1、今天学习了两道应用题,找出它们的共同点?(这两道应用题,题里的单位“1”都是未知的数量,都可以列方程来解,这样顺着题意列出方程思考起来比较方便。)

2、用方程解答稍复杂的分数应用题的关键是什么?(关键是找准单位“1”,再按照题意找出数量间的相等关系列出方程)

四、练习

练习十第4、12、14题。

最新比例的数学应用题 篇3

一、教学目标:

1、使学生在掌握稍复杂的求一个数的几分之几是多少的分数应用题的基础上,利用其数量关系列方程解答稍复杂的已知一个数的几分之几是多少,求这个数的应用题。

2、在分析解答的过程中拓宽学生的思维空间,培养学生分析问题的能力。

二、教学重点:

确定单位,理清题中的数量关系。利用题中的等量关系用方程解答。

三、教学过程:

(一)复习准备

1、找出单位。

2、(1)画图分析并列式解答。

(2)说说你是怎样思考和解答的?

(3)学生分析教师板演线段图。

3、导入。

今天我们继续学习分数应用题。

(二)学习新课。

现在老师把这道题改动一下。分析解答。

(1)读题,找出已知条件和问题。

(2)提问:这两道题有没有相同的条件?(有,都已知吃了这袋大米的不同的地方在哪儿?(前者已知一袋大米的重量,求还剩的重量,后者已知还剩的重量,求这袋米的重量。)

(3)我们把这道题也用线段图表示出来,应从哪个条件入手找单位

(4)谁来分析这个条件?

学生分析的同时教师板演线段图。

(5)上道题是已知单位1的重量,求还剩的重量,这道题呢?谁能把条件和问题标在图上?

生在黑板上画出。

(6)对比两道题的线段图说一说是怎样变化的。(条件和问题互相转化了。)

(7)无论谁为条件,谁为问题,题中所涉及的数量关系变了吗?(没变)

(8)说一说上题在解答的过程中涉及到哪些数量关系?(总重量-它

(9)现在买来大米的重量是未知的,根据这个等量关系可以用什么方法解答?(列方程)

(10)试着在练习本上列方程解答。

(11)谁能说说你是怎样解答的?

①生口述:

答:买来大米40千克。

②买来的重量还剩几分之几=还剩的重量。

③小结:

通过刚才的分析解答,你认为这两道题实际上什么相同。

数量关系相同。

④解答方法相同吗?为什么?

解答方法不同。单位已知,可根据数量关系用算术方法解答;单位未知,可用x代替,运用数量关系式列方程解答。

⑤出示例7。读题,找出已知条件和所求问题。

画图分析解答。

a、从这个条件可以看出题中是几个数量相比?

两个数量相比。

追问:哪两个?

四月份实际烧煤量和四月份计划烧煤量。

我们应把哪个数量看作单位?为什么?

把原计划烧煤量看作单位。因为和它相比,以它为标准,所以把它看作单位。

②画图时我们要用两条线段表示两个数量,先画谁呢?

先画原计划烧煤吨数。

下一步画什么?

实际烧煤吨数。

指名回答:把计划烧煤量看作单位,平均分成9份,实际比计划节约的烧煤量相当于这样的1份,即节约的烧煤量占计划烧煤量。

这两条线段谁为已知?谁为未知?

③指图提问:计划烧煤量与实际烧煤量之间有什么样的等量关系?

计划烧煤吨数-节约吨数=实际烧煤吨数。

计划烧煤吨数未知怎么办?

设计划烧煤吨数为x,用方程解答。

④试做在练习本上。

⑤反馈:说说你的解答方法及依据。

a、学生独立画图分析并列式解答。

b、反馈提问

c、你用什么方法解答的?依据的等量关系式是什么?

(三)课堂总结。

今天我们学习的例6、例7与前边学过的分数应用题相比有什么相同点?有什么不同点?

数量间的等量关系相同,解答方法不同。

(四)巩固反馈。

(1)课本第74页1题。

(2)根据列式补充条件。

(五)布置作业。

最新比例的数学应用题 篇4

比例尺应用题是数学中常见的题目类型,旨在考察学生对比例尺概念的理解以及在实际问题中的运用能力。以下是一些比例尺应用题及答案:

题目1:一幅地图的比例尺为1:50000,表示图上1厘米代表实际距离5000米。如果甲、乙两城市的图上距离是3.6厘米,那么它们的实际距离是多少千米?

答案:实际距离 = 图上距离 × 比例尺所对应的实地距离 = 3.6厘米 × 5000米/厘米 = 18000米 = 18千米

所以,甲、乙两城市之间的实际距离是18千米。

题目2:一个长方体模型的长、宽、高分别为5厘米、3厘米、2厘米,制作该模型时采用的比例尺为1:20。求该长方体的实际尺寸(单位:米)。

答案:实际尺寸 = 图上尺寸 × 比例尺所对应的放大或缩小倍数 = 长方体模型尺寸 × 20

实际长 = 5厘米 × 20 = 100厘米 = 1米 实际宽 = 3厘米 × 20 = 60厘米 = 0.6米 实际高 = 2厘米 × 20 = 40厘米 = 0.4米

所以,该长方体的`实际尺寸为长1米、宽0.6米、高0.4米。

题目3:某图纸上的一个圆形零件直径标注为10毫米,已知该图纸使用的是1:5的比例尺。请问这个零件的实际直径是多少厘米?

答案:实际直径 = 图纸直径 × 比例尺所对应的放大或缩小倍数 = 10毫米 × 5

实际直径 = 50毫米 = 5厘米

因此,这个圆形零件的实际直径是5厘米。

以上就是三道比例尺应用题及其答案,通过这些题目可以进一步理解并掌握比例尺在实际问题中的应用。

最新比例的数学应用题 篇5

教学目标:

1.使学生加深理解和掌握的数量关系和解题思路,能正确地分析、解答分数,百分数应用题。

2.使学生进一步明确简单的和稍复杂的之间的联系,以及不同类型的的结构特征和解题规律;进一步提高分析、推理和判断等思维能力。

教学过程:

一、揭示课题

1.口答算式或方程.

(1)20米是50米的百分之几?

(2)50米的 是多少?

(3)多少米的 是20米?

学生口答后提问:第(1)题的40%是怎样求的,表示什么意义?第(2)、(3)题是按怎样的数量关系列式的,这两个式子都表示什么意义?

2.引入课题。

我们根据分数的意义和求一个数的几分之几(或百分之几)是多少用乘法的数量关系,学习过。这节课就复习。(板书课题)我们学过的,分为简单的和稍复杂的两种情况。通过复习,要能进一步理解井掌握它们的数量关系、解题思路,更加明确它们的结构特征和解题规律,提高分析、解答的能力。

二、复习解题思路

1.选择下面三个条件里的一个条件作问题,编出三道不同的应用题。

(1)松树30棵 (2)杨树50棵

(3)松树棵数是杨树的

学生回答时,分别出示三道应用题

(1)松树30棵,杨树50棵,松树棵数是杨树的几分之几?

(2)杨树50棵,松树棵数是杨树的 ,松树多少棵?

(3)松树30棵,正好是杨树棵数的 ,杨树多少棵?

指名学生口答算式或方程,老师板书。提问:第(1)题为什么用杨树棵树做除数?第(2)、(3)题为什么都用杨数棵数乘言?你认为解答的关键是什么?(板书:关键:确定单位1的数量)追问:上面题里与对应的数量是什么?求一个量是另一个量的几分之几要怎样算?第(2)、(3)题都是技怎样的数量关系列式子的?

2.归纳基本思路。

从上面的题可以看出,解答的关键是确定单位1的数量,并且找出与几分之几(百分之几)对应的量,然后联系分数、百分数的意义,或者一个数乘分数 (或百分数)可以表示求一个数的几分之几(或百分之几)是多少的意义列出数量关系式,再列出式子解答。如果要求一个量是另一个量的几分之几,就用几分之几对应的数量除以单位1的数量;当几分之几是已知条件时,就要根据单位1的量乘几分之几等于与几分之几对应的数量来列算式或方程解答。

3.组织练习。

(1)做练一练第1题。

提问各把哪个数量看做单位1。让学生填写数量关系式,然后口答。结合提问学生第(2)题的数量关系式里为什么是节约的数量,强调数量对应关系。提问:从上面可以看出的基本数量关系是怎样的?找数量关系时要注意什么?

【板书:基本关系:对应数量单位1的量=几分之几(百分之几)

单位1的量几分之几(百分之几)=对应数量】

指出:我们解答,一般根据含有几分之几或百分之几这句话确定单位1的量和题里的数量关系,这样就可以根据数量关系式来列式解答。

(2)做练一练第2题。

让学生默读题目,提问学生两个问题有什么不同。学生做在练习本上。指名学生口答算式,老师板书。提问:求这两个问题有什么相同的地方?【都用除法算,都用单位1的量做除数】有什么不同的地方?为什么不同? 指出:解答一个数量是另一个数量的几分之几或百分之几的应用题,要先确定好单位1的量.再根据问题里数量间的对应关系找准需要的数量,然后列式解答。

(3)做练一练第3题第(1)、(2)题。

学生默读题目。提问:这两题哪个数量是单位1的数量?指名两人板演,其余学生做在练习本上。集体订正。提问:这两题都是按怎样的数量关系式列式的?为什么第(1)题用算术方法直接列乘法算式解答,第(2)题用方程解答?指出,这两题都是已知谁是单位1的几分之几这个条件,解答时也是看这个条件先确定好单位1的数量,再根据单位1的数量乘几分之几,等于几分之几的对应数量列式解答。当单位1的量已知时,就可以按数量关系式直接列算式解答;当单位1的量未知时,就要按数量关系式列出方程解答。

(板书:单位1已知算术方法解答单位1未知列出方程解答)

(4)做练一练第3题第{3}题。

学生改编应用题,老师依次出示。提问:你能从改变后的条件看出求小麦面积的数量关系各是怎样的吗?指名两人板演,其余学生做在练习本上。集体订正,结合让学生说一说怎样想的。提问:为什么这两题的式子都是两步计算的?解题方法为什么不一样?指出:解答,要注意数量之间的对应关系,(板书:注意:数量的对应关系)当题里的数量与题里的几分之几、百分之几不对应时,就是稍复杂的。解答时,要根据条件和问题的联系确定数量关系式,并按照单位1已知还是未知确定解题方法,然后对照数量关系列算式或方程解答。

三、综合练习

1.做练习十六第7题。

提问:这两题有什么相同?让学生在练习本上列出算式,然后提问怎样列式的,老师板书。提问:这两题的数量关系式是不是相同?数量关系式相同,为什么列出的算式不同?指出:根据数量关系式列式时,要找准相应的数量。

2.做练习十六第8题。

让学生在练习本上解答。指名口答算式和方程,老师板书。提问:这两题有怎样的数量关系?为什么所用的解题方法不一样?

3.做练习十六第9题。

提问:这两题有什么不同的地方?指名两人板演,其余学生做在练习本上。集体订正。提问:为什么问题相同,而解题方法不一样?这两题各是按怎样的数量关系式列式子的?

指出:解答,一般先确定单位1的量,(板书:定1)再根据单位1已知还是未知确定解题方法,明确用算术方法还是用方程解答,然后对照数量关系式列出式子解答。

四、课堂小结

通过复习,对于解答,你进一步明确了些什么?

五、课堂作业

完成练习十六第7题的计算;练习十六第10、11题。