范文常常是我们写作会借鉴方式,范文中的写作框架能够帮助读者更好地理解和掌握文章的核心,你知道去哪些地方比较好找范文吗?57梯子网的编辑为您精心整理的“最简单的数学应用题”将为您掌握更多的知识",请务必将本文保留以备不时之需!...

活动范文 > 试题 > 导航 > 最简单的数学应用题8篇

最简单的数学应用题

2024-01-27

相关推荐

最简单的数学应用题8篇。

范文常常是我们写作会借鉴方式,范文中的写作框架能够帮助读者更好地理解和掌握文章的核心,你知道去哪些地方比较好找范文吗?57梯子网的编辑为您精心整理的“最简单的数学应用题”将为您掌握更多的知识",请务必将本文保留以备不时之需!

最简单的数学应用题(篇1)

148.甲、乙、丙三人同时从A向B跑.当甲跑到B时,乙离B还有15米,丙离B还有32米;当乙跑到B时,丙离B还有20米;当丙跑到B时,一共用了25秒,乙每秒跑多少米?

解:乙行15米,丙行32-20=12米。所以乙和丙的速度比是15:12=5:4

所以当乙行到B时,行了5份,丙行了4份,所以全程是20÷(5-4)×5=100米。

所以丙的速度是每秒100÷25=4米,乙的速度是每秒4÷4×5=5米

149.小明从家去体育馆看球赛.去时他步行5分钟后,跑步8分钟,到达体育馆.回来时,他先步行10分钟后,开始跑步,结果比去时多用了3分15秒钟回到家.他跑步的速度与步行的速度比是多少?

解:后来跑步用了5+8+3+1/4-10=25/4分,

所以步行10-5=5分钟的路程和跑步8-25/4=7/4分钟的路程相等。

所以跑步和步行的速度比是5:7/4=20:7。

150.有一批零件,甲、乙两种车床都可以加工.如果甲车床单独加工,可以比乙车床单独加工提前10天完成任务.现在用甲、乙两车床一起加工,结果12天就完成了任务.如果只用甲车床单独加工需多少天完成任务?

解:在明月清风老师的指导下,终于知道了算法。关键是分数拆分。

合做12天完成,工效和是1/12

把1/12拆分成两个单位分数

12^2=144把144写成两数积的形式,其中一个数比另一个数大10。

因为8×18=144;所以有12+8=20天。

151.甲、乙两个书架,共有书3000册,甲的册数的2/5比乙的册数的1/4多420本,求两个书架各有书多少册?

解:如果给乙的1/4加上420册,即给乙加上420*4=1680册,乙的1/4就与甲的2/5同样多。这时,甲、乙的册数比为1/4:2/5=5:8。

所以,甲书架有书:(3000+1680)*5/(5+8)=1800册;乙书架有书:3000-1800=1200册。

152.姐弟两人打印一批稿件,姐姐单独打印需要的时间是弟弟所需时间的3/8,姐姐先打印了这批稿件的2/5后,接着由弟弟单独打印,用24小时打印完,问姐姐打印了多少小时?

解法一:

另外的1-2/5=3/5如果弟弟做,需要的时间就相当于姐姐的3/5÷3/8=8/5,

所以姐姐单独打印完需要24÷(2/5+8/5)=12小时,所以姐姐打了12×2/5=4.8小时。

解法二:

姐姐单独打印需要的时间是弟弟所需时间的3/8,姐姐先打印了这批稿件的2/5需要的时间相当于弟弟完成同样任务所需总时间的2/5×3/8=3/20,

接着由弟弟单独打印,需时为总时间的3/5,两比为1/4,共计用24小时。

弟弟打剩下的3/5用时24×4/(1+4)=96/5小时,完成全部任务用96÷5÷3/5=32小时。姐姐单独打完用时是32×3/8=12小时。所以姐姐用了12×2/5=4.8小时。

153.有甲、乙两个水管向水池注水,先开甲管,开放时间是单开乙管注满水池所需时间的1/3.然后开放乙管,开放的时间是单开甲管注满水池所需时间的1/3.这样注满水池的13/18.如果甲、乙两管同时开放,注满水池需3+3/5小时,那么单开甲管或单开乙管注满水池,各需要多少小时?

解:用初中的方法解答一下。设甲管开放时间是x小时,乙管开放时间是y小时。

有x/y×1/3+y/x×1/3=13/18,解得y/x=2/3

因为1/y+1/x=5/18,所以,x=9,y=6

最简单的数学应用题(篇2)

1 小明跑步速度是步行速度的3倍,他每天从家到学校都是步行。有一天由于晚出发10分钟,他不得不跑步行了一半路程,另一半路程步行,这样与平时到达学校的时间一样。那么小明每天步行上学需要时间多少分钟?wwW.TZw57.COM

2 大货车和小轿车从同一地点出发沿同一公路行驶,大货车先走1.5小时,小轿车出发后4小时后追上了大货车。如果小轿车每小时多行5千米,那么出发后3小时就追上了大货车。问:小轿车实际上每小时行多少千米?

3 已知甲车速度为每小时90千米,乙车速度为每小时60千米,甲乙两车分别从A,B两地同时出发相向而行,在途径C地时乙车比甲车早到10分钟;第二天甲乙分别从B,A两地出发同时返回原来出发地,在途径C地时甲车比乙车早到1个半小时,那么AB距离时多少?

4 甲、乙、丙三人步行的速度分别是:每分钟甲走90米,乙走75米,丙走60米。甲、丙从某长街的西头、乙从该长街的`东头同时出发相向而行,甲、乙相遇后恰好4分钟乙、丙相遇,那麽这条长街的长度是?米。

5 甲乙两人在A、B两地间往返散步,甲从A、乙从B同时出发;第一次相遇点距B处60米。当乙从A处返回时走了l0米第二次与甲相遇。A、B相距多少米?

6 甲,乙两人在一条长100米的直路上来回跑步,甲的速度3米/秒,乙的速度2米/秒。如果他们同时分别从直路的两端出发,当他们跑了10分钟后,共相遇多少次?

7 从一个长为8厘米,宽为7厘米,高为6厘米的长方体中截下一个最大的正方体,剩下的几何体的表面积是_________平方厘米.

8 有一个棱长为1米的立方体,沿长、宽、高分别切二刀、三刀、四刀后,成为60个小长方体这60个小长方体的表面积总和是______平方米。

9 一千个体积为1立方厘米的小正方体合在一起成为一个边长为10厘米的大正方体,大正方体表面涂油漆后再分开为原来的小正方体,这些小正方体至少有一面被油漆涂过的数目是多少个?

10 小强骑自行车从家到学校去,平常只用20分钟。由于途中有2千米正在修路,只好推车步行,步行速度只有骑车的1/3,结果用了36分钟才到学校。小强家到学校有多少千米?

最简单的数学应用题(篇3)

(1)平均数问题:平均数是等分除法的发展。

解题关键:在于确定总数量和与之相对应的总份数。

算术平均数:已知几个不相等的同类量和与之相对应的份数,求平均每份是多少。数量关系式:数量之和÷数量的个数=算术平均数。

加权平均数:已知两个以上若干份的平均数,求总平均数是多少。

数量关系式 (部分平均数×权数)的总和÷(权数的和)=加权平均数。

差额平均数:是把各个大于或小于标准数的部分之和被总份数均分,求的是标准数与各数相差之和的平均数。

数量关系式:(大数-小数)÷2=小数应得数

最大数与各数之差的和÷总份数=最大数应给数

最大数与个数之差的和÷总份数=最小数应得数。

例:一辆汽车以每小时 100 千米 的速度从甲地开往乙地,又以每小时 60 千米的速度从乙地开往甲地。求这辆车的平均速度。

分析:求汽车的平均速度同样可以利用公式。此题可以把甲地到乙地的路程设为“

(2) 归一问题:已知相互关联的两个量,其中一种量改变,另一种量也随之而改变,其变化的规律是相同的,这种问题称之为归一问题。

根据求“单一量”的步骤的多少,归一问题可以分为一次归一问题,两次归一问题。

根据球痴单一量之后,解题采用乘法还是除法,归一问题可以分为正归一问题,反归一问题。

一次归一问题,用一步运算就能求出“单一量”的归一问题。又称“单归一。”

两次归一问题,用两步运算就能求出“单一量”的归一问题。又称“双归一。”

正归一问题:用等分除法求出“单一量”之后,再用乘法计算结果的归一问题。

反归一问题:用等分除法求出“单一量”之后,再用除法计算结果的归一问题。

解题关键:从已知的一组对应量中用等分除法求出一份的数量(单一量),然后以它为标准,根据题目的要求算出结果。

数量关系式:单一量×份数=总数量(正归一)

总数量÷单一量=份数(反归一)

例 一个织布工人,在七月份织布 4774 米 , 照这样计算,织布 6930 米 ,需要多少天?

分析:必须先求出平均每天织布多少米,就是单一量。 =

(,通过求总数量求得单位数量的个数(或单位数量)。

特点:两种相关联的量,其中一种量变化,另一种量也跟着变化,不过变化的规律相反,和反比例算法彼此相通。

数量关系式:单位数量×单位个数÷另一个单位数量 = 另一个单位数量

单位数量×单位个数÷另一个单位数量= 另一个单位数量。

例 修一条水渠,原计划每天修 800 米 , 6 天修完。实际 4 天修完,每天修了多少米?

分析:因为要求出每天修的长度,就必须先求出水渠的长度。所以也把这类应用题叫做“归总问题”。不同之处是“归一”先求出单一量,再求总量,归总问题是先求出总量,再求单一量。

(4) 和差问题:已知大小两个数的和,以及他们的差,求这两个数各是多少的应用题叫做和差问题。

解题关键:是把大小两个数的和转化成两个大数的和(或两个小数的和),然后再求另一个数。

解题规律:(和+差)÷2 = 大数

大数-差=小数

(和-差)÷2=小数

和-小数= 大数

例 某加工厂甲班和乙班共有工人 94 人,因工作需要临时从乙班调 46 人到甲班工作,这时乙班比甲班人数少 12 人,求原来甲班和乙班各有多少人?

分析:从乙班调 ÷ ,乙班在调出 ,甲班为 9 4 - 8

最简单的数学应用题(篇4)

1.六年级五个班的同学共植树100棵.已知每个班植树的棵数都不相同,且按数量从多到少的排名恰好是一、二、三、四、五班.又知一班植的棵数是二、三班植的棵数之和,二班植的棵数是四、五班植的棵数之和,那么三班最多植树多少棵?

一班=二班+三班,二班=四班+五班;

可知,五个班的总和=一班+二班+三班+二班=二班×3+三班×2=100

所以二班×5>100>三班×5

所以二班人数超过20,三班人数少于20人

如果二班植树21棵,那么三班植树(100-21×3)÷2=17.5,棵数不能为小数。

如果二班植树22棵,那么三班植树(100-22×3)÷2=17棵

所以三班最多植树17棵。

2.甲每小时跑13千米,乙每小时跑11千米,乙比甲多跑了20分钟,结果乙比甲多跑了2千米.乙总共跑了多少千米?

乙多跑的20分钟,跑了20/60×11=11/3千米,

结果甲共追上了11/3-2=5/3千米,

需要5/3÷(13-11)=5/6小时,

乙共行了11×(5/6+20/60)=77/6千米

3.有高度相等的A,B两个圆柱形容器,内口半径分别为6厘米和8厘米.容器A中装满水,容器B是空的,把容器A中的水全部倒入容器B中,测得容器B中的水深比容器高的7/8还低2厘米.容器的高度是多少厘米?

这个题目要注意是“底面积”而不是“底面半径”,与高的关系!

容器A中的水全部倒入容器B,

容器B的水深就应该占容器高的(6×6)÷(8×8)=9/16

所以容器高2÷(7/8-9/16)=6.4厘米

4.有104吨的货物,用载重为9吨的汽车运送.已知汽车每次往返需要1小时,实际上汽车每次多装了1吨,那么可提前几小时完成.

用进一法解决问题,次数要整数才行。

需要跑的次数是104÷9=11次……5吨,所以要跑11+1=12次

实际跑的次数是104÷(9+1)=10次……4吨,故10+1=11次

往返一次1小时,所以提前(12-11)×1=1小时。

5.师、徒二人第一天共加工零件225个,第二天采用了新工艺,师傅加工的零件比第一天增加了24%,徒弟增加了45%,两人共加工零件300个,第二天师傅加工了多少个零件?徒弟加工了几个零件?

这个题目有点像鸡兔同笼问题:

如果两人工作效率都提高24%,那么两人共加工零件225×(24%+1)=279个

说明徒弟提高45%-24%=21%的工作效率就可以加工300-279=21个

所以徒弟第一天加工21÷21%=100个,那么徒弟第二天加工了100×(1+45%)=145个

那么师傅加工了300-145=155个零件。

6.奋斗小学组织六年级同学到百花山进行野营拉练,行程每天增加2千米.去时用了4天,回来时用了3天,问学校距离百花山多少千米?

利用等差数列来解答:

行程每天增加2千米我是这样理解的,第一天按照原来的速度行使,从第二天开始,都比前一天多行2千米。所以形成了一个等差数列。

由于前面四天和后面三天行的路程相等。

去时,四天相当于原速行四天还要多2+4+6=12千米

返回时,三天相当于原速行三天还要多8+10+12=30千米

所以原速每天行30-12=18千米,可以求出学校距离百花山18×3+30=84千米

最简单的数学应用题(篇5)

题目:

1、 甲乙两件商品成本共200元,甲商品按30%的利润定价,乙商品按20%的利润定价,后来两件商品都按定价打九折出售,结果仍获利27.7元,求甲商品的成本。

2、出售一件商品,现由于进货价降低了6.4%,使得利润率提过了8%,求原来出售这件商品的利润率。

答案:

1、解答:200×(1+20%)÷90%-200=16

(27.7-16)÷(30% - 20%)÷90%=130

2、解答:设原来的利润率为x,

1+x%=(1-6.4%)×(1+x%+8%)

x=17%

最简单的数学应用题(篇6)

张先生向商店订购某种商品80件,每件定价100元.张先生向商店经理说:“如果你肯减价,每减价1元,我就多订购4件.”商品店经理算了一下,如果减价5%,由于张先生多订购,仍可获得与原来一样多的利润.问这种商品的成本是多少元?

解法一:减价100×5%=5元,多订购5×4=20件,共订购80+20=100件。

由于利润一样,所以存在:利润×80=(利润-5)×100,可以得出利润是25元。

所以成本是100-25=75元。

解法二:减价100×5%=5元,多订购5×4=20件,如果按照原价销售,就会多获得20÷80=1/4的利润。那么减价的5元,相当于原来利润的1-1÷(1+1/4)=1/5。那么原来的`利润是5÷1/5=25元。因此成本是100-25=75元。

减价5%就是减价了:100×5%=5元

所以多订了:4×5=20件

共订购:80+20=100件

现在的售价是:(100-5)×100=9500元--------100件的成本和利润

原来的售价是:80×100=8000元-------------80件的成本和利润

因为利润一样,所以9500-8000=1500元是100-80=20件的成本

一件的成本是:1500÷20=75元

最简单的数学应用题(篇7)

快速学会应用题1.读题,用铅笔划出已知数,所求数的单位。2.单位一样选择加减运算,单位不一样选择乘除运算。3.若单位一样:越来越多的用加法,如一共,合起来,总共用了花了......越来越少的用减法,如剩下了多少,谁比谁多多少,少多少......4.若单位不一样:需要将已知条件和所求数分类。如每天每人每个每平方米每什么什么的,称之为平均数,标注1;如工作了多少天几个小时几筐水果几袋大米几个什么的,称之为数量数,标注2;如一共多少课多少倾多少钱什么的,称之为总量数,标注3.5.知道1、2求3乘法;知道1、3求2除法;知道2、3求1除法。6.若出现混合运算则分步计算,上一步所求得数为下一步的已知条件,以此类推,可以快速准确解答小学生应用题。最后记得写单位写答。进行小学数学应用题的教学每一堂课开始之前,必须要有简短的导入部分。有导入部分才是一堂完整的好课。注意:一般导入部分有好几个,设疑导入,激发兴趣;直观导入,直接进入主题;情景导入,引人联想。几分钟的导入不是很长,但是能够让学生能赶快进入这堂课的主题,一下子从内心吵闹进入认真听课。低年级的学生教学应注意详细的讲解和准确的示范,以丰富的图片为主。注意:老师的教学应该进行直观性教学,老师尽量把一些复杂的概念讲的通俗易懂,多用一些图片和视频(教具)来充分吸引学生的兴趣和注意力。现在小学的数学教材二年级以内的主要是以图文为主,文字为辅。重视学生发现能力及探究能力的培养。当学生有不懂的地方,老师应该及时留意。下课后应该积极备课,开展一节复习课进行教学。或者在平时的时候穿插一个角色游戏便于学生加强对所学概念的理解。因为学生刚接触一个新的概念的时候,往往接受效果的不佳。特别是低年级学生学习人民币的时候,从来没有接触过钱的.概念,人民币的练习起码做了四五次,学生才能明白。老师作为一个观察者,要灵活调整自己的思路。教孩子做数学应用题课堂上认真听老师讲课。学习好的孩子都是在课堂上能够跟上老师节奏的。我一直觉得老师是个神奇的存在,你在家里讲的孩子听不懂,但老师讲的孩子都能听懂。而且孩子特别愿意说,我老师是这样讲的,不是你那样讲的。孩子对老师有一种天然的敬畏,喜欢听老师讲课。不管什么样的应用题,都需要先看懂题目。做应用题最重要的是要让孩子看懂题目,让孩子先说说题目要求做什么的?应该用加法还是减法。孩子如果看不懂题目,就要求孩子多读几遍题目,家长不要立即讲给孩子听应该怎么做。我对我家孩子的要求就是自己读题做题,不会做的多读几遍,先理解意思,实在不会,就先空着。最后再自己动脑思考思考。各种应用题目平时要多做。对于刚上小学的孩子,不管是聪明程度还是学习能力都不分上下的,有的孩子在家练习的多了,遇到相似的题型也就多了,所以做题也就相对轻松了。所以练习在平时的学习中是不能少的。

最简单的数学应用题(篇8)

一件工作,甲独做12小时完成,乙独做10小时完成,丙独做15小时完成。现在甲先做2小时,余下的由乙丙二人合做,还需几小时才能完成?

解:必须先求出各人每小时的工作效率。如果能把效率用整数表示,就会给计算带来方便,因此,我们设总工作量为和15的`某一公倍数,例如最小公倍数60,则甲乙丙三人的工作效率分别是

60÷12=5 60÷10=6 60÷15=4

因此余下的工作量由乙丙合做还需要

(60-5×2)÷(6+4)=5(小时)

答:还需要5小时才能完成。

例4、一个水池,底部装有一个常开的排水管,上部装有若干个同样粗细的进水管。当打开4个进水管时,需要5小时才能注满水池;当打开2个进水管时,需要15小时才能注满水池;现在要用2小时将水池注满,至少要打开多少个进水管?

解:注(排)水问题是一类特殊的工程问题。往水池注水或从水池排水相当于一项工程,水的流量就是工作量,单位时间内水的流量就是工作效率。

要排水管的工作效率及总工作量(一池水)。

只要设某一个量为单位1,其余两个量便可由条件推出。

我们设每个同样的进水管每小时注水量为1,则4个进水管5小时注水量为(1×4×5),2个进水管15小时注水量为(1×2×15),从而可知

每小时的排水量为 (1×2×15-1×4×5)÷(15-5)=1

即一个排水管与每个进水管的工作效率相同。由此可知

一池水的总工作量为 1×4×5-1×5=15

又因为在2小时内,每个进水管的注水量为 1×2,

所以,2小时内注满一池水

至少需要多少个进水管? (15+1×2)÷(1×2)=8.5≈9(个)